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Resumen en Español

En la actualidad, una cantidad enorme de información se registra y almacena di-

ariamente en forma de imágenes, video, audio, señales biomédicas, datos financieros y

cient́ıficos. Para sacar provecho de toda esta información, es útil encontrar regularidades

y estructuras en los datos que permitan reconocer patrones y clasificarlos de forma con-

veniente. La automatización de ese proceso es el objeto del aprendizaje maquinal.

En aplicaciones como el reconocimiento de la escritura mansucrita, del habla o de

objetos en grabaciones de video, las entidades que se desean clasificar se presentan como

una sucesión o secuencia de datos correlacionados entre śı y la asignación de cada se-

cuencia a una clase determinada se basa en el modelado estad́ıstico de las mismas. Es

posible considerar que secuencias distintas son independientes, pero es necesario describir

adecuadamente las dependencias estad́ısticas entre las observaciones que las constituyen.

Los modelos ocultos de Markov (HMM, del Inglés Hidden Markov Model) son la her-

ramienta más utilizada con este propósito. El atractivo principal de estos modelos reside

en su simpleza, en la disponibilidad de algoritmos muy eficientes desde el punto de vista

computacional para su entrenamiento y evaluación, y en su capacidad para describir

secuencias con un número variable de observaciones.

En un escenario de clasificación t́ıpico, los datos observados pertenecen a una de h

clases distintas, pero puede usarse un mismo conjunto de caracteŕısticas para describir

a todas las clases. Si Y = 1, 2, . . . , h denota la clase y X ∈ Rp las caracteŕısticas, el

clasificador es una función f(X) que nos indica la clase a la cual pertenece X con una

mı́nima probabilidad de error.

v



vi Resumen en Español

El reconocimiento estad́ıstico de patrones comprende fundamentalmente la selección de

caracteŕısticas útiles para discriminar entre las distintas clases, el modelado estad́ıstico de

las mismas, y la construcción de f(X) a partir de tales modelos. En los problemas que nos

interesan en esta tesis, los datos que queremos clasificar son secuencias de observaciones

X = {X1, X2, . . . , XT} y la regla de clasificación f(X) utiliza un HMM ϑy asociado con

los datos de cada clase y.

Tradicionalmente, el uso de HMM para construir un clasificador se encuadra dentro de

las estrategias generativas de aprendizaje automático. Bajo este enfoque, la suposición

fundamental es que los datos de cada clase son modelados exactamente por el HMM

correspondiente, de modo que p(X|Y = y) ∼ p(X|ϑy). Suponiendo que se conocen

también las probabilidades a priori p(Y = y), el clasificador óptimo es la regla de Bayes,

que asigna a los datos una clase de acuerdo al modelo que maximiza la probabilidad

posterior p(ϑy|X). El aprendizaje del clasificador se reduce entonces a estimar las dis-

tribuciones p(X|ϑy) a partir de un conjunto de datos de entrenamiento, para lo cual se

usa comúnmente estimación de máxima verosimilitud.

Entrenando los clasificadores de esta forma se han logrado buenos desempeños en

aplicaciones que involucran, por ejemplo, la clasificación de la escritura manuscrita, del

habla y de secuencias biológicas como proteinas y ácidos nucleicos. No obstante, en este

enfoque se tratan los datos de cada clase en foma independiente y no se aprovecha todo el

conjunto de datos disponibles para enfatizar las diferencias entre las distintas clases. El

objetivo general de esta tesis es proveer nuevas herramientas para construir clasificadores

de datos secuenciales basados en HMM que aprovechen mejor la información disponible

para ayudar a discriminar entre las clases.

Aprendizaje discriminativo de HMM definidos en el dominio de la transfor-

mada ondita

Una observación clave respecto del aprendizaje generativo es reconocer que p(X|ϑy)

no es idéntica a la verdadera distribución de los datos de la clase, sino que usualmente

es sólo una aproximación escogida por su conveniencia anaĺıtica y computacional. En

consecuencia, el clasificador de Bayes basado en p(X|ϑy) no es óptimo en aplicaciones

prácticas.

Debido a ello, en los últimos años se ha registrado un gran interés por el entrenamiento

discriminativo de HMM. A diferencia del entrenamiento convencional, en este tipo de

aprendizaje el objetivo ya no es describir adecuadamente p(X|Y = y), sino construir

directamente una función f(X;ϑ1, . . . , ϑh) que minimice la tasa de error esperada en la

clasificación. Para ello, los parámetros de todos los modelos se estiman simultáneamente,
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utilizando datos de entrenamiento de todas las clases. Una alternativa directa para

optimizar el desempeño del clasificador es minimizar el riesgo emṕırico de clasificación

con respecto a una función de costo. La elección usual para esta función es asignar un

costo nulo cuando la clase asignada a la observación es correcta y un costo unitario en

cualquier otro caso.

La estimación de HMM con este tipo de técnicas ha mostrado resultados muy intere-

santes en diversas aplicaciones. Sin embargo, estos algoritmos están desarrollados para

entrenar HMM con una estructura particular en la cual la distribución condicional de las

observaciones es una densidad normal o una mezcla de densidades normales. Aunque este

tipo de HMM es el usado con mayor frecuencia en las aplicaciones, no resultan adecuados

para describir algunas secuencias de datos con estructuras de dependencias particulares.

Un ejemplo de ello son las representaciones de señales basadas en onditas.

La transformada ondita ha resultado ser una herramienta muy útil para analizar señales

e imágenes en distintas aplicaciones, permitiendo su descomposición en elementos con dis-

tintos niveles de detalle o resolución. Las representaciones suelen concentrar la enerǵıa

de toda la señal en un número reducido de coeficientes y aquellos que están relacionados

temporal/espacialmente suelen mostrar fuertes dependencias estad́ısticas a lo largo de las

distintas escalas de análisis. El uso de mezclas de densidades normales definidas sobre el

conjunto de coeficientes resulta inadecuado para modelar estas propiedades. Por el con-

trario, un modelo oculto de Markov definido sobre los coeficientes de la transformación

ha resultado ser un modelo especialmente útil para estas representaciones. Estos modelos

reciben el nombre de árboles ocultos de Markov (HMT, del Inglés Hidden Markov Trees)

y se han aplicado con éxito en tareas diversas. Los HMT fueron luego empleados como

modelos de observación en HMM convencionales. Esto permitió combinar las ventajas del

HMT para capturar dependencias estad́ısticas locales en el dominio de la transfomación

con la capacidad del HMM de modelar relaciones de más largo alcance a lo largo de

la secuencia y de tratar con la longitud variable que suelen mostrar las mismas. No ob-

stante, en estos trabajos se estiman los parámetros de los modelos HMM-HMT intentando

aproximar la distribución de p(X|Y = y), sin explotar infomación discriminativa.

En esta tesis, se propone un método discriminativo de estimación de parámetros para

modelos compuestos HMM-HMT con el objeto de mejorar su desempeño en tareas de

clasificación. La estrategia desarrollada utiliza un conjunto de funciones discriminantes,

definidas a partir de la máxima probabilidad que pueden presentar los datos observados

bajo el modelo HMM-HMT correspondiente a cada clase. Estas cantidades pueden ser

computadas en forma eficiente utilizando una adaptación del algoritmo de Viterbi. Par-

tiendo de modelos parcialmente entrenados bajo el enfoque de máxima verosimilitud, el

método adapta iterativamente los parámetros del conjunto de modelos a fin de minimizar
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una aproximación diferenciable del riesgo de la clasificación sobre el conjunto de datos de

entrenamiento. El aprendizaje es supervisado y la aproximación de la función de riesgo

se construye en tres pasos:

Las funciones discriminantes se combinan en una única medida d(X) cuyo signo

decide si la clase asignada a la secuencia de entrenamiento X es correcta: f(X) =

sign[d(X)] y la clasificación es correcta si f(X) < 0.

Una función de costo asociada a la clasificación de X penaliza una decisión equiv-

ocada. ?(d) es una función continua que se aplica sobre el rango de valores de

d(X) para otorgar un valor en el intervalo (0; 1). Al ser una función continua de

d, este costo puede penalizar no sólo la decisión final del clasificador sino también

la dificultad que presenta esa decisión, ya que valores |d(X)| cercanos a cero indi-
can que la secuencia X presenta una probabilidad similar de pertenecer a clases

distintas.

La función de riesgo es la suma de los costos asociados con la clasificación de todas

las secuencias de entrenamiento.

El riesgo resultante es una función de los parámetros de los modelos a través de las fun-

ciones discriminantes que se combinan en d. Decimos que es aproximada porque no utiliza

la función de costo 0 − 1, que es discontinua, sino una aproximación diferenciable dada

por ?(d). Esto nos permite obtener su gradiente con respecto al conjunto de parámetros

de los modelos y de esa forma utilizar métodos de gradiente para hallar los estimadores

que minimizan la función de riesgo.

Proponemos y comparamos dos alternativas para la selección de d(X). Ambas com-

paran el valor de la función discriminante correspondiente a la clase correcta de X con

una aproximación suave al máximo valor que toman las funciones discriminantes para el

resto de las clases, de modo de ver qué tan dif́ıcil de clasificar resulta X. Sin embargo,

una de las alternativas efectúa esta comparación a través de una diferencia mientras que

la otra alternativa lo hace a través de un cociente que se compara luego con la unidad.

En el primer caso, d ∈ (−∞; +∞) y el gradiente de la función de costo usado en la actu-

alización de los parámetros resulta ser una función de |d(X)|. Es decir que el aprendizaje
está conducido por la dificultad que presentan las secuencias de entrenamiento para ser

clasificadas correctamente, independientemente de que la decisión del clasificador resulte

correcta o no. De esta forma, una secuencia que es clasificada correctamente con facil-

idad no genera una modificación apreciable en el valor de los parámetros. Tampoco lo

hace una secuencia que es clasificada incorrectamente presentando un valor positivo muy

grande de d(X). Por el contrario, para la segunda definición de d(X) el rango de esta

función es (−∞; 1) y entonces las secuencias para las cuales el clasificador se equivoca

fuertemente presentan un d(X) cercano a la unidad. Para una misma función de costo
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?(d) que es simétrica en d, la consecuencia de esto es que los datos de entrenamiento que

son mal clasificados durante el aprendizaje del clasificador provocan actualizaciones de los

parámetros que en general son de mayor magnitud que las registradas con la alternativa

anterior, de modo que las secuencias mal clasificadas tienen más peso sobre el proceso de

aprendizaje.

Para evaluar ambas alternativas se realizaron pruebas de reconocimiento de fonemas

extráıdos de la base de datos TIMIT, de referencia en aplicaciones de reconocimiento

automático del habla. Los fonemas escogidos representan una prueba de gran dificultad

para un clasificador, ya que estas señales están obtenidas de registros de habla continua,

lo que suma a las semejanzas acústicas una gran variabilidad de los fonemas debida al

contexto en el que fueron enunciados. En ambos casos, los resultados obtenidos mostraron

ser consistentemente mejores que los obtenidos con clasificadores basados en modelos

entrenados de forma tradicional. No obstante, las mejoras de desempeño registradas

fueron significativamente mayores para la segunda alternativa, que penaliza con mayor

intensidad los casos que son mal clasificados. En estos ejemplos, las tasas de error de

clasificación mostraron reducciones cercanas al 20% comparadas con las correspondientes

a clasificadores entrenados por los métodos tradicionales.

Los resultados correspondientes a esta parte del trabajo de tesis fueron publicados en

[86, 87]. Durante la primera parte de estos desarrollos, se exploró también el uso de

los HMM-HMT para aplicaciones de supresión de ruido basada en modelos estad́ısticos.

Esos primeros resultados fueron reportados en [71].

Reducción de dimensiones bajo el enfoque de suficiencia

Cuando se usan modelos estad́ısticos para el reconocimiento de patrones, es frecuente

incluir un procedimiento para reducir la dimensión p del espacio de caracteŕısticas. Ello

permite definir modelos con un menor número de parámetros, de modo que fijado el

conjunto de datos de entrenamiento, la varianza de los estimadores obtenidos es menor

que si se hubieran definido modelos más grandes sobre las caracteŕısticas originales. Esta

disminución de la varianza de los estimadores usualmente se traduce en una mejora en el

desempeño del clasificador.

En los métodos lineales de reducción de dimensiones las caracteŕısticas originales se

proyectan a un subespacio de menor dimensión mediante una transformación lineal. En

el contexto de clasificadores basados en modelos ocultos de Markov, los métodos más

usados en las aplicaciones son extensiones del análisis discriminante lineal (LDA, del Inglés

Linear Discriminant Analysis) para datos normalmente distribuidos. Estos métodos están

adaptados a un esquema de estimación de máxima verosimilitud a fin de poder integrar
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la reducción de dimensiones al proceso tradicional de estimación de parámetros en HMM.

La más usada de estas técnicas es una variante conocida simplemente como HLDA (por

Heteroscedastic Linear Discriminant Analysis).

Este proceso de reducción no debeŕıa perder información relevante para la clasificación,

sino conservar toda la información discriminativa presente en las caracteŕısticas originales

pero en un número menor de combinaciones lineales de las mismas. Sin embargo, a pesar

del uso extendido de HLDA en aplicaciones de reconocimiento de patrones basado en

modelos ocultos de Markov, su desarrollo no tiene en cuenta la retención de información

y tampoco existe hasta el momento un análisis de su optimalidad en tal sentido.

Por el contrario, la reducción suficiente de dimensiones (SDR, del Inglés Sufficient

Dimension Reduction) es un enfoque relativamente reciente que tiene en cuenta expĺıcita-

mente la pérdida de información. El objetivo de esta metodoloǵıa es estimar el subespacio

generado por ρ ∈ Rp×d, con d ≤ p mı́nimo, de modo que X|(ρTX, Y ) ∼ X|ρTX. Esta

condición asegura que la proyección de X conserva toda la información disponible sobre Y .

Cuando se dispone de un modelo para X|(Y = y), la estimación de ese subespacio mı́nimo

puede efectuarse usando máxima verosimilitud. Los métodos disponibles de SDR basados

en este tipo de estimación se limitan, sin embargo, a datos con distribución normal y han

estado orientados t́ıpicamente al problema de regresión más que a la clasificación.

En clasificación, el objetivo de la reducción suficiente es estimar el subespacio generado

por ρ de modo que f(ρTX) = f(X) para todos los X. Aunque puede parecer que el

subespacio estimado de esta forma es distinto al obtenido con la condición anterior, es

posible demostrar que cuando los datos de cada clase se distribuyen normalmente ambos

subespacios son idénticos.

Partiendo de este resultado, en esta tesis utilizamos desarrollos teóricos recientes referi-

dos a la reducción suficiente de poblaciones normalmente distribuidas para analizar LDA

y HLDA en el contexto de suficiencia. Mostramos que las proyecciones obtenidas con LDA

conservan la información discriminativa sólo cuando los datos de cada clase se distribuyen

normalmente y la matriz de covarianza es la misma para todas las clases. Por otra parte,

mostramos que con HLDA es posible lograr una reducción que conserve la información

discriminativa, pero que para ello frecuentemente es necesario retener un número grande

de combinaciones lineales de las caracteŕısticas originales. Esta cantidad usualmente es

mayor que la que seŕıa necesario retener empleando otro método de proyección lineal

conocido como LAD (por Likelihood Acquired Directions).

Mostramos que este resultado es una consecuencia de la estructura de las matrices

de covarianza que impĺıcitamente se suponen en HLDA. La reducción de dimensiones

a través de este método puede entenderse como un proceso de dos pasos. En primer
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lugar, se busca una transformación (ρ,ρ0) ∈ Rd×d de tal modo que toda la información

espećıfica de la clase queda concentrada en ρTX y ρTX es estad́ısticamenete independi-

ente de ρT
0 X. Luego, como ρT

0 X no depende de la clase Y , es común para todas ellas y

puede descartarse. La observación fundamental que enfatizamos en esta tesis es que la

suposición de independencia entre ρTX y ρT
0 X es más fuerte de lo necesario para poder

descartar ρT
0 X e impone una estructura particular en las matrices de covarianza de los

modelos de las clases para poder lograrla. Mostramos que la condición suficiente para

reducir las dimensiones sin perder información discriminativa es que ρT
0 X|(ρTX, Y = y)

no dependa de la clase y. Esta caracteŕıstica es lo que explota LAD y gracias a ello

asegura conseguir la reducción suficiente mı́nima para modelos normales con matrices de

covarianza arbitrarias. La consecuencia práctica de estos resultados es que con HLDA

usualmente es necesario retener un mayor número de combinaciones lineales de X que con

LAD, o presentado de otra forma, que fijada una cantidad d de combinaciones lineales

de las X originales, estas nuevas coordenadas conservan mejor la información original

cuando se obtienen con LAD. Dado que LAD tiene el mismo costo computacional que

HLDA, estos resultados sugieren el uso de LAD como alternativa general de reducción

lineal para modelos normales con covarianza arbitraria.

Por otra parte, si los datos verdaderamente satisfacen la estructura de covarianza

supuesta por HLDA, es posible que la proyección obtenida con este método tampoco sea

mı́nima. En la tesis también proponemos un método de proyección para estos casos que

provee una reducción suficiente mı́nima, al mismo tiempo que explota la estructura par-

ticular de las matrices de covarianza. El estimador resultante puede entenderse como una

aplicación particular de LAD sobre caracteŕısticas transformadas previamente mediante

HLDA.

Todos estos desarrollos son ilustrados con simulaciones y con un ejemplo de clasificación

de d́ıgitos manuscritos. En este último caso utilizamos HLDA y LAD para proyectar los

datos originales a un subespacio bidimensional. El ejemplo ilustra cómo las distintas

clases presentan distribuciones de caracteŕısticas más normales cuando la reducción se

lleva a cabo por medio de LAD. Más importante aún, clasificando los d́ıgitos utilizando un

discriminante cuadrático sobre las proyecciones obtenidas con LAD y con HLDA, la tasa

de errores de clasificacón obtenida con LAD presenta una mejora de aproximadamente el

60% respecto a la tasa de error obtenida con HLDA.

El enfoque de suficiencia para la reducción de dimensiones proporciona además un sus-

tento teórico para inferir cuál debe ser la dimensión d del subespacio al cual se proyectan

los datos a fin de conservar toda la información. Este aspecto también es de interés

práctico, ya que brinda la posibilidad de utilizar métodos de inferencia menos costosos

computacionalmente que las pruebas de validación cruzada utilizadas comúnmmente. En
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la tesis derivamos métodos de inferencia para d usando el criterio de información de

Akaike (AIC), el criterio de información de Bayes (BIC), tests de relaciones de verosimil-

itud (LRT) y tests de permutación. Estos métodos ya estaban disponibles para LAD,

pero no aśı para LDA y HLDA. Las pruebas con datos simulados mostraron que BIC en

particular es una buena alternativa para la estimación de d, brindando buenos resultados

con un costo computacional relativamente bajo. La opción de menor costo computacional

es LRT, pero su desempeño no es tan bueno como el de BIC cuando la cantidad de datos

disponibles para el entrenamiento es reducida.

Por último, extendemos todos estos métodos desarrollados inicialmente para datos con

distribución normal a HMM que usan densidades normales como modelos de observación.

Esta extensión se basa en la descomposición conveniente de la función de verosimilitud

que resulta de utilizar el algoritmo de maximización de la esperanza para la estimación

de parámetros de los HMM bajo el enfoque de máxima verosimilitud.

Los resultados correspondientes a esta parte del trabajo de tesis fueron publicados en

[84]. Por otra parte, el software desarrollado para implementar los métodos de SDR fue

publicado en [22].







Abstract

Hidden Markov models (HMM) are statistical models that have proven successful to

deal with sequential data. They provide a way to model complex dependencies between

observed data by setting simple dependencies between latent variables: a Markov chain

that is not available to the observer. When used in a classification setting, an HMM mod-

els the probability density function of the data from each class. They are trained typically

using maximum likelihood estimation separately for each class and label assignement is

achieved using a plug-in Bayes classifier. This is an example of generative learning, which

can be suboptimal when the data does not match the assumed distribution. In this thesis

we study methods and algorithms to exploit discriminant information when using HMM

to classify sequential data. In the first part, we deal with HMM defined on the wavelet

transform of the input sequences. These are hierarchical Markovian structures that use

hidden Markov trees as observation models for the wavelet coefficients, given the state

of the underlying chain. We derive new training algorithms for these models, specifically

targeted to achieve minimum classification error. Under this approach, all HMM are

trained together in orther to maximize discrimination power. In the second part of the

thesis, we take a look back to HMM with mixtures of Gaussians as observation densities,

which are the most widely used models in applications. We focus in scenarios of high-

dimensional observed data and derive methods for dimension reduction of the feature

space using the approach of statistical sufficiency, which aims to preserve class informa-

tion in the reduced data. We derive new algorithms and use this framework to analyze

information preservation attained by available methods of dimensionality reduction in

HMM.

xv
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CHAPTER 1

Introduction

Learning from data has become a major task in recent years. Collecting and storing

data is often easy and cheap with today’s technology. However, extracting useful informa-

tion and taking advantage of it have proved a much more difficult task. Machine learning

aims at finding structures in data automatically, so that they can be used as patterns to

make predictions about new observations coming from the same source of data.

An important subset of machine learning techniques are targetted to sequential data. In

this type of data, observations form a correlated sequence. Though different sequences can

be assumed independent, modeling the correlations within each of them is fundamental

to describing the underlying process. Examples include time series, biomedical signals,

handwritten text and sequences of aminoacids in proteins. The observations can come

directly from the measurement process, as may be the case with econometric time series,

but also from features extracted from a short-term analysis of a whole signal, as it is

usual with speech. In addition, the size of the sequences frequently is not fixed, which

also contributes to the complexity of modeling them.

Hidden Markov models (HMM) have been found very useful in applications concerning

this type of data. They provide parsimonious models of the observations by enabling

simple statistical dependencies between latent variables that are hidden but govern the

outcomes available to the observer. In a typical setting for classification, the data are

assumed to belong to one out of h different classes that can be described using the

same set of features or descriptors. Those features are assumed to be well-modeled by

a single HMM for each class. The learning task to build a classifier is to estimate the

model parameters that maximizes the likelihood of the class observations given the model.

1
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Figure 1.1. Generative learning approach.

Once all the models have been trained in this way, the classification of a new observation

reduces to evaluate which model is more likely to have generated the data.

The learning framework stated above is called generative, as it assumes that models

can generate the data from their corresponding class. This scheme has shown to be

successful for automatic classification tasks concerning for instance speech [28, 50, 79],

handwritten characters and digits [5, 9, 46, 35, 88], biological sequences [3], and network

traffic [25, 65]. Nevertheless, this basic approach strieves only on describing the data from

each class, regardless of whether this effort helps to discriminate beetween classes or not

in a practical setting. In this thesis, new learning methods for HMM-based classifiers are

developed focussing on discriminative information as a way to improve their performance

for pattern recognition.

1.1 Generative vs discriminative learning

Let Y be a label used to indicate the class from where a multivariate vector of features

X comes. Given a sample of labeled observations from the joint process (Y,X), the goal

in statistical pattern recognition is to construct a classification rule Y = f(X) to predict

with minimum probability of error the class from where an unlabeled vector of features

comes. When statistical models are used to describe the data, f(X) is a function of those

models.

Let {ϑy} be the models for the classes, with y = 1, 2, . . . , h. In generative learning,

the essential assumption is that p(X|Y = y) = p(X|ϑy). The exact distribution is not

known in advance, but it is common to assume that it belongs to some parametric family
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Figure 1.2. Discriminative learning approach.

of probability density functions, and that the parameters can be estimated from the

data. The usual choice to do this is maximum likelihood estimation (MLE). Once all

of these distributions and the a priori probability of each class πy = p(Y = y) have

been estimated, Bayes rule allows us to compute posterior probabilities for each class

given a new observation X. Then, a class label is assigned to X according to the Bayes

classification rule

f(X) = argmax
y

p(ϑy|X).

This is the usual setting used with HMM-based classifiers. If the assumed models

account for the true distribution of the data and the set of training signals is large

enough to allow us achive asymptotic optimality of the estimators, the above approach

guarantees minimal error rates in classification [74]. Nevertheless, these assumptions

hardly ever hold in applications. Assumed models usually cannot be expected to match

the true class distributions and sample availability for parameter estimation often is too

small to account for the large variability that exists in data. Thus, this approach to

classifier design becomes suboptimal and there is a significant increase in error rates [13].

To overcome these limitations, in recent years there has been a growing interest in

discriminative training of HMMs [13, 44, 51]. Unlike the generative approach, this one

does not aim to maximize the likelihood of the class observations given the model for that

class only, but to exploit dissimilarities between models using all the available data. We

can think of discriminative learning not trying to describe the whole data distributions,

but to locate the decission boundary between them. To do so, this approach uses a set of

discriminant functions that depend on the models, and the whole set of parameters {ϑy}
is estimated simultaneously using training samples from all the classes [51].

Under the discriminative training framework, several criteria have been proposed to

drive the learning process of HMM, giving rise to different methods. As examples, max-

imum mutual information (MMI) [2] seeks to maximize the mutual information between
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the observations and their labels. This criterion inherits several properties from infor-

mation theory, but cannot guarantee to achieve the least error rate [13]. On the other

hand, minimum classification error (MCE) [53] sets minimization of the error rate ex-

plicitely as the optimization task. Minimum phone error (MPE) [78] is another criterion

widely known in the speech recognition community. It is conceptually similar to MCE,

but when the data is structured at several hierarchical levels it allows to consider smaller

units of the sequences to account for the classification error. For example, sentences in

speech contain words and words contain phonemes. MCE would account for errors at the

sentence level regardless of how many errors occured within the sentence, whereas MPE

would account for errors at the phoneme level.

Among these methods, MCE allows for a more direct link between the design of the

classifier and its expected performance. Systems trained using this approach have shown

important improvements in recognition rates compared to the same systems trained using

conventional MLE, both in simple apllications [53, 61, 91] as well as in large-scale

applications [68, 90]. Nevertheless, up to date these approaches have been limited to

HMMs that use Gaussian mixtures as observation distributions.

1.2 Extracting features in the wavelet domain

Observed data is usually transformed in some way before using them for pattern recog-

nition [49]. This process aims to extract features that can help to discriminitate better

between different classes. Take the speech signal as an example. It is not the rough

record what is used for classification, but a number of spectral features obtained in a

short-term analysis of the signal [28, 50, 79]. Typically, the speech waveform is ana-

lyzed in segments of 30 ms length. For each segment, a spectral analysis is carried out

and further processing of the spectrum, gives a set of coefficients that are assumed to be

descriptive for the signal. This random vector of coefficients is the feature vector used

for classification, and statistical models like HMM operate on this feature space. Similar

processes for feature extraction could be described for other applications. Most of them

are heuristic in nature, specific for the application and lose information in the process.

Could we think of a feature extraction process that remain fairly the same for a wide

range of tasks? One that needs less decisions from an expert and that could be used when

smart engineered features are not available in advance? Developing a method like that

is obviously a very ambitious goal that would help enormously to automate the learning
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process. While being far away from a solution yet, first steps in that direction has been

given, taking tools from wavelet theory and multirresolution analysis [7, 15, 64].

An important property of the wavelet transform is that it allows to use parsimonious

statistical models to describe the coefficients of the representation and the statistical de-

pendencies between them [89]. In this way, useful models are assumed directly on the

wavelet domain, and no other feature extraction process is required. The best known of

wavelet-domain models is the hidden Markov tree (HMT) [24], which has led to many

successful applications [31, 45, 57, 80, 93]. Nevertheless, the HMT is not suitable to

sequential data with varying lengths. This limitation arises from the use of the (dyadic)

discrete wavelet transform (DWT) [27, 66], which makes the structure of representations

depend on the size of signals or images. To overcome this we could think of tying param-

eters along scales. This is extensively used in the signal processing community, where

parameter estimation often relies on a single training sequence. However, in a typical

scenario of pattern recognition we have multiple observations available and we would

want to use all of that information to train a full model without constraining modeling

power because of tying parameters. To do so, the HMT should be trained and used

only with signals or images with the same size; otherwise, a warping preprocessing would

be required to match different sizes and that would be difficult to achieve in real-time

applications.

A different approach to deal with variable length signals in the wavelet domain is to

exploit the probabilistic nature of the HMT to embed it as the observation distribution

for a standard HMM [70, 72]. In this way, the HMT accounts for local features in

a multiresolution framework while the external HMM handles dependencies in a larger

time scale and adds flexibility to deal with sequential data. The HMM-HMT model was

shown to achieve promising results both for pattern recognition and for denoising tasks

[71, 72]. Nevertheless, the training algorithms used so far provide maximum likelihood

(ML) estimates of model parameters and discriminative learning approaches have not

been proposed yet.

1.3 Dimensionality reduction

The performance of a classifier depends strongly on the set of features on which it acts.

As discussed above, observed data are usually transformed in some way to emphasize

important information for class discrimination. The output of this feature extraction
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process is a random vector X ∈ Rp which is assumed to be better suited for classification

than the raw measurement.

Nevertheless, the coordinates of X often have redundant information or some of them

are not useful to discriminate between different classes. When this is the case, the para-

metric models for X|(Y = y) use parameters to describe nuissance dimensions that are

not important for classification. For a given training sample, using larger models results

in an increase of the variance of parameter estimates, which often degrades the ability of

the classifier to perform well with new data not used during the learning process [40, 49].

Because of this, variable selection or dimension reduction are frequently added to the

feature extraction to retain a smaller number of predictors and lower the size of the

statistical models [49]. In common variable selection procedures, some coordinates of X

are discarded and the remaining ones are retained without further processing [8]. On the

other hand, dimension reduction typically involves some transformation of the features

X followed by a selection process on the new coordinates to retain just a few of them

[48].

A frequent choice with HMM-based classifiers is to use linear dimension reduction.

In this type of reductions, a matrix ρ ∈ Rp×d, d ≤ p, is used to project the original

features X onto a lower-dimensional subspace with coordinates ρTX ∈ Rd. These d

linear combinations of X should not lose any information carried by X that is relevant

for classification. If successful, we could estimate models for ρTX|Y , instead of full-sized

models for X|Y .

The best known of linear reduction methods is principal component analysis (PCA).

It seeks to maximize the variance of the retained coordinates as a way to conserve the

information available in the original X [52]. However, PCA does not account for any

dependence about (Y,X), and thus important discriminative information can be loss

in the reduction process. For a classification task, supervised dimension reduction is a

better option. Examples of the most widely used methods in HMM-based classifiers are

the subspace projection methods proposed in [55, 56, 81]. They pursue likelihood-based

approaches to linear discriminant analysis (LDA) and heteroscedastic linear discriminant

analysis (HLDA) for Gaussian data. As these methods are stated in a MLE framework,

they can be consistently embedded into the training process of HMM. Nevertheless, both

LDA and HLDA have been derived from heuristics, without taking care of retention of

information.

Sufficient dimension reduction (SDR) is a relatively new approach that deals explicitly

with loss of information for a particular objective [18, 59]. In a classification setting,

ρTX is said to be a linear sufficient reduction for Y |X if given ρTX the class assignment
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is conditionally independent of the remaining information in X [23, 92]. However, SDR

developments have been more tailored to regression problems, where the essential task is

to estimate the smallest subspace of X that does not lose any information about Y . The

sufficient reduction subspace in regression is usually larger than the sufficient discrimina-

tive subspace, but connections between them can be stated under some assumptions [23].

This allows us to use methods developed for regression in a classification framework.

The general SDR methodology does not require model assumptions for X or X|Y
[16, 23, 59], but when a model for X|Y is assumed, maximum likelihood estimation

can be used to estimate the fewest linear combinations of the features that retain all the

information about Y . Existing model-based theory concerns conditional normal models

only. It was introduced in [18] and further developed in [20, 21]. In particular, a

new method called Likelihood Acquired Directions (LAD) was presented in [20] to deal

with Gaussian data with unconstrained covariance. Nevertheless, these methods have

not been explored neither for sequential data nor for complex classification tasks. In

addition, understanding existing reduction methods for HMM-based classifiers under this

framework is also pendant.

1.4 Contributions of the Thesis

This thesis deals with discriminative information when using HMMs for pattern recog-

nition in sequential data. We focus on two different aspects:

Discriminative training of wavelet-domain HMM.

A new method for discriminative training of HMM-HMT models is intro-

duced, aiming at improving the performance of sequential pattern recognizers

in the wavelet domain. The proposed method relies in the MCE approach and

provides reestimation formulas for fully non-tied models. An adapted version

of Viterbi’s decoding algorithm suited to HMM-HMT models is used to define

the discriminant functions. Valued at each training sample, these functions are

further combined in a single misclassification function whose sign determines the

decision of the classifier. Direct application of standard procedures to do that used

with Gaussian mixture-HMMs is shown not to be effective for the HMM-HMT

model, requiring a modification of the way rival candidates are weighted during

the classification process. To deal with this, we propose a new approximation to
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the misclassification loss that penalizes differences in the order of magnitude of

model likelihoods rather than in their values. As a result of this approximation,

the updating process is driven not only by confusability of the training samples as

is the usual approach, but also by the correctness of their classification. Phoneme

recognition experiments with highly confusable phonemes from the TIMIT speech

corpus [97] show that the proposed method consistently outperforms its MLE-

based counterparts. Results from this contribution were published in [86, 87].

Sufficient dimension reduction of HMM.

Standard procedures for dimension reduction in HMM-based pattern recogniz-

ers are re-examined under the sufficiency approach. It is shown that both LDA

and HLDA are capable of retaining all the class information there is in the original

features, but under quite strongs constraints on the covariance structure of the

data that hardly ever hold in practice for a small dimension of the mantained sub-

space. As a consequence, to minimize the information loss HLDA usually needs to

project the data to a subspace that is not the smallest one that could be obtained,

thus losing efficiency. Most important, it is argued that LAD provides a better

way to deal with heteroscedastic data, and that it outperforms HLDA when data

is not constrained to the special covariance structure required by this method.

A very special case arises if a reduction actually has a structured covariance as

assumed in HLDA. The subspace estimated with HLDA may not be minimal even

in this case, and the LAD estimator, albeit providing the smallest reduction yet,

losses efficiency because it does not account for the special structure. We address

this point and present a new estimator that both satisfies the same covariance

structure as HLDA and gives a minimal sufficient reduction. On the other hand,

the discussed theory allows us to derive methods to infer about the dimension of

the smallest subspace that retains all the information to discriminate between the

classes. This is useful in practice to serve as alternative to k-fold cross-validation

or trial-and-error approaches. Developments are carried out for conditional nor-

mal models and its extension to HMM is shown. Results from this contribution

have been reported in [84, 85], along with an open-access software toolkit for

SDR methods published in [22].
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1.5 Outline

We start by reviewing the basic theory and algorithms for HMM in Chapter 2. Both

HMM with normal observation distributions and wavelet-domain HMM which use HMT

as observation models are discussed. Contributions of the thesis are developed in Chapter

3 and Chapter 4. Concluding discussions are given in Chapter 5, along with further

research derived from this work.





CHAPTER 2

Basics of hidden Markov models

2.1 Introduction

Hidden Markov models (HMM) are statistical models that haved proved useful to

describe sequential data. They comprise a bivariate random process in which one of the

variables forms a Markov chain. The state of the Markov chain remains hidden to the

observer, but governs the outcome of the observed random variable in a probabilistic

manner. The succes of HMM lies in that they provide parsimonious parametric models

for sequential data and in that there exist very efficient algorithms for estimating their

parameters.

The basic theory on HMM was published by Baum and his colleagues [4]. Later, the

proposed learning algorithms under the maximum likelihood framework turned out to be

a special case of the expectation (EM) maximization algorithm for incomplete data [29].

In the applications area, they have shown to be remarkably useful for modeling speech,

being at the core of automatic speech recognition, speech synthesis, spoken lenguage

understanding and machine translation [28, 47, 50, 79]. They have proved useful also

in modeling and classificacion of proteins and genomic sequences [3], biomedical signals as

the electrochardiogram [75], network traffic [25, 65] and econometric time-series [67]. In

this chapter we review the basics of HMM, emphasizing the topics that will be needed in

later developments. More comprehensive treatments can be found in [11, 36, 38, 50, 67].

11
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2.2 Definition of HMM

Let {qk} be a sequence of random variables, with k = 1, 2, . . . , T and qk taking values in

the finite set {1, 2, . . . , Nq}. Denote by qt
1 the subsequence {q1, q2, . . . , qt}. The sequence

{qk} is said to form a Markov chain provided

p(qt|qt−1
1 ) = p(qt|qt−1). (2.1)

From the product rule of probability, the joint distribution of the overall sequence can be

factorized as

p(qT
1 ) = p(qT |qT−1

1 )p(qT−1
1 )

= p(qT |qT−1
1 )p(qT−1|qT−2

1 )p(qT−2
1 )

= p(q1)
T?

t=1

p(qt|qt−1
1 ).

Thus, for a Markov chain we have

p(qT
1 ) = p(q1)

T?

t=1

p(qt|qt−1). (2.2)

If p(qt = i|qt−1 = j) does not depend on the index t, the Markov chain is said to

be homogeneous and it is completely specified by the set of parameters {πi, aij}, with
πi = p(q1 = i) and aij = p(qt = i|qt−1 = j) for i, j = 1, 2, . . . , NQ. These parameters are

constrained by

NQ?

i=1

πi = 1,

NQ?

i=1

aij = 1, for all j. (2.3)

Some state-transitions may not be allowed, so that aij = 0 for them. The set of allowed

transitions, along with their corresponding probabilities, are often shown in a finite-state

representation as the one shown in Figure 2.1. In this figure, for instance, the chain

cannot jump neither between states 2 and 4, nor between states 1 and 3, nor stay in

states 2 or 4 in consecutive instants.

Assume now that {qk} is not observable, but what is available to the observer is

another sequence of random variables {Xk} whose distribution is governed by the state
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Figure 2.1. Finite-state representation of a Markov chain. State-

transtions 1 → 3, 3 → 1, 2 → 4, 4 → 2, 2 → 2, and 4 → 4 are not

allowed for this example.

Figure 2.2. Graphical-model representation of a HMM. The graph shows

the statistical dependencies between the variables of the model.

of the Markov chain. In particular, assume that

p(Xt|Xt−1
1 ,qt

1) = p(Xt|qt), (2.4)

with Xt−1
1 = {X1, X2, . . . , Xt−1}. In this way, the distribution of Xt is determined only

by qt and it is conditionally independent of the remaining variables. For instance, Xt may

be a normally distributed random variable whose mean and variance are determined by

qt.

When (2.1) and (2.4) hold, the random process {qk, Xk} is said to be a hidden Markov

chain. In the engineering literature it is most commonly known as a hidden Markov model

(HMM). The statistical dependence structure can be represented in a graphical model

as the one shown in Figure 2.2. The graph summarizes that the observed variable Xt

depends only on the hidden variable qt and this depends only on the preceding qt−1.

Assume t indexes time instants. At any t, the Markov chain takes a state qt = i out of

the NQ possible states and the observed output Xt is drawn from a probability density

function Xt|(qt = i). At time t+1, the state of the chain can be the same as qt, or it may

have been evolved to other state qt+1 = j according to a probability p(qt+1 = j|qt = i).

Given the state at this new instant, the output of the model is drawn now from the

random model Xt+1|(qt+1 = j). The outputs {Xt} are the unique observable quantities
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of the process, so the states {qt} of the underlying Markov chain always remain hidden

to the observer.

The observed variables Xt can be scalars or vectors, but the conditional distributions

Xt|qt are usually assumed to belong all to the same parametric family. We say that

the HMM is homogeneous if the underlying Markov chain {qt} is homogeneous and the

conditional distribution Xt|qt does not depend on the index t. In this case, the HMM

is completely specified by the structure ϑ = {Q, πi, aij , bi(·)}, where Q = {1, 2, . . . , NQ}
is the set of allowed states for the latent vaiables qt, πi = p(q1 = i|ϑ) and aij = p(qt =

i|qt−1 = j, ϑ) are the parameters of the underlying Markov chain {qt}, and bi(·) stands
for the parametric model for p(X |qt = i, ϑ). Thus, given Q, if Nb parameters are needed

to characterize each observation model bi(X), in general we have (1 + Nb + NQ)NQ

parameters in the model that must satisfy the constraints (2.3). It is important to note

that the observed sequence {Xk} is not a Markov chain. In fact, one advantage of HMM

relies in that they can model longer-range statistical dependences between the observed

variables through simple first-order dependences between the latent variables {qk}.

2.3 Model likelihood and computations

Let X = XT
1 be a single sequence of observed features. Assume we model this sequence

with an homogeneous HMM defined by the set of parameters ϑ and let q = qT
1 be the

sequence of states of the Markov chain at t = 1, 2, . . . , T . As we cannot observe the

sequence q that originated the observations, the likelihood Lϑ(X) = p(X|ϑ) accounts for
all the possible paths q that could have generated the observed X. Each path q has a

joint probability p(X,q). From assumptions (2.1) and (2.4), the likelihood then reads

Lϑ(X) = p(X|ϑ)
=
?

∀q
p(X|q, ϑ)p(q|ϑ)

=
?

∀q

T?

t=1

p(Xt|qt, ϑ)
T?

t=2

p(qt|qt−1, ϑ)p(q1|ϑ).
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Rearranging, we have

Lϑ(X) =
?

∀q
p(q1|ϑ)p(X1|q1, ϑ)

T?

t=2

p(Xt|qt, ϑ)p(qt|qt−1, ϑ),

where the summation is then over all possible sequences of states q that may have gen-

erated the observations. Using the notation introduced in Section 2.2 we get

Lϑ(X) =
?

∀q
bq1(X1)πq1

T?

t=2

bqt(Xt)aqt−1qt . (2.5)

In many applications with sequential data, a particular type of HMM known as left-

to-right HMM is used [28, 50, 79]. In this type of HMM, aij = 0 for j > i and the

initial state is fixed say at q1 = 1 so that we can write π1 = a01 = 1 and πj = 0, ∀j > 1.

Figure 2.3 shows a finite-state representation of this model and a corresponding trellis to

show the possible paths that generated the observations. For this common structure we

have

Lϑ(X) =
?

∀q

T?

t=1

bqt(Xt)aqt−1qt . (2.6)

A key issue for the success of HMM is that there exist very efficient algorithms for com-

puting the likelihood, for inference about the sequence of state that most likely generated

the observations, and also for estimation of the parameters of the model [11, 79].

2.3.1 Parameter estimation

Likelihood computation assumes we know the parameters of model ϑ. In practice,

we have to estimate them from the data. The usual framework to do that is maximum

likelihood estimation [79]. Estimating the likelihood directly is infeasible due to the

large number of allowed sequences of states we would have to consider and the fact that

each path includes the product of many probability factors that would lead to numerical

underflow in computations. In addition, taking the logarithm of the likelihood function

would not help, even when the conditional densities are taken from an exponential family,

as it does not allow for any useful factorization.

A very efficient alternative is to use the EM algorithm for incomplete data [4, 29].

Assume for simplicity that we have a single observed sequence X to learn the parameters

of ϑ. The sequence X is considered as incomplete data, being (X,q) the complete data
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(a) Finite-state representation of a left-to-right HMM with

five states.

(b) Trellis for a sequence of six observations modeled with the

HMM in (a).

Figure 2.3. a) Finite-state representation of a left-to-right HMM with

five states. Note that states 0 and 4 are mandatory intial and final states,

respectively. b) Trellis graph for a sequence of six observations modeled

with a left-to-right HMM with five states. The arrows indicate the possi-

ble sequences of states taken by the underlying Markov chain to generate

the obseved sequence X6
1 = {X1, X2, . . . , X6}. One of these paths is high-

lighted. Note that the chain can reach the final state q = 4 only at the

final observation X6.
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[29]. The algorithm works iteratively. As q is not observed, it first estimates p(q|X, ϑold)

in the E step, using the observed features and a current estimate of the model param-

eters ϑold. Given this estimation, in the M step the model parameters are updated by

maximizing the expectation

Q(ϑ, ϑold) = Eq|X,ϑold {log p(q,X|ϑ)}
=
?

q

p(q|X, ϑold) log p(q,X|ϑ). (2.7)

Maximizing this expectation amounts to maximizing (2.5), but computations are much

more efficient since the joint likelihood log p(q,X|ϑ) factorizes conveniently.

To describe the computations in some detail, let us start by rewritting the expectation

Q(ϑ, ϑold) as

Q(ϑ, ϑold) =
?

q

?

t

p(q|X, ϑold) log aqt−1qt +

+
?

q

?

t

p(q|X, ϑold) log bqt(Xt)

=

NQ?

i=1

NQ?

j=1

T?

t=1

γt(i, j) log aij +

NQ?

j=1

T?

t=1

γt(j) log bj(Xt),

where we have defined

γt(i, j) ? p(qt−1 = i, qt = j|X, ϑold)

=
p(qt = i, qt−1 = j,X|ϑold)

p(X|ϑold)
(2.8)

γt(j) ? p(qt = j|X, ϑold)

=
p(qt = j,X|ϑold)

p(X|ϑold)
. (2.9)

Then, in the E step we compute the quantities γt(i, j) and γt(j) using a current estimate

ϑold of the model parameters, and use these results in the M step to update the model

parameters by maximizing Q(ϑ, ϑold).

The E step. The efficient implementation of this step of the algorithm requires the

definition of a pair of auxiliary variables that can be computed recursively. Define the

forward variable

αt(i) ? p
?
Xt

1, qt = i |ϑ
?
. (2.10)
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Starting with α1(i) = πibi(X1), it is shown that it can be computed with the recurssion

[6, 79]

αt(i) = bi(Xt)

NQ?

j=1

αt−1(j)aji. (2.11)

Similarly, we can define a backward variable

βt(i) ? p
?
XT

t+1 |qt = i, ϑ
?
. (2.12)

Starting from βT (i) = 1/NQ, it is also shown that it can computed recursively as [6, 79]

p(XT
t+1|qt = i, ϑ) =

NQ?

j=1

bj(Xt+1)βt+1(j)aij . (2.13)

From definitions (2.10) and (2.12), we see that γt(i, j) and γt(j) can be computed effi-

ciently as

γt(i, j) =
αt−1(i)aijbj(Xt)βt(j)?NQ

j=1 αT (j)
, (2.14)

γt(j) =
αt(j)βt(j)?NQ

j=1 αT (j)
. (2.15)

Here we have used the recurssion for the forward variable to compute the likelihood

of the observed sequence X under model ϑold

Lϑold(X) = p(X|ϑold) =
?

∀i∈Q

p(X, qT = i|ϑold) =
?

∀i∈Q

αT (i). (2.16)

The M step. Once the E step has been completed, the model parameters are updated

by maximizing Q(ϑ, ϑold). Note first that

Q(ϑ, ϑold) =

NQ?

i=1

NQ?

j=1

T?

t=1

γt(i, j) log aij +

NQ?

j=1

T?

t=1

γt(j) log bj(Xt)

= Qa(ϑ, ϑ
old) +Qb(ϑ, ϑ

old).

As Qb(ϑ, ϑ
old) does not depend on the state-transition probabilities aij after the quantities

γt(i, j) have been obtained in the E step, the estimation of parameters {aij} requires the

maximization of just Qa(ϑ, ϑ
old). As a consequence, the estimation of the state-transition
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probabilities has the same form regardless the choice of parametric observation models.

MaximizingQa(ϑ, ϑ
old) with the constraints (2.3) leads to the set of re-estimation formulas

aij =

T?
t=1

γt(i, j)

T?
t=1

NQ?
j=1

γt(i, j)

, for i, j = 1, 2, . . . , NQ. (2.17)

Likewise, updating the parameters of the observation models {bi(X)} requires the maxi-

mization of Qb(ϑ, ϑ
old) only, but to derive the specific re-estimation formulas we have to

assume a parametric model for bi(X). In the next paragraph we describe this step when

the observation models are normal densities.

Gaussian HMM. In many HMM applications, the observations are random vectors of

features Xt = xt ∈ Rp and multivariate normal densities or mixtures of normal densities

are used as observation models. We will refer to this models as normal hidden Markov

models or simply as GHMM. For simplicity, assume bj(xt) = N (xt|µj ,∆j). In this case,

we have

Qb(ϑ, ϑ
old) =

NQ?

j=1

T?

t=1

γt(j) log bj(xt)

= −1

2

NQ?

j=1

T?

t=1

γt(j)(xt − µj)
T∆−1

j (xt − µj) + B,

where

B = −1

2

NQ?

j=1

T?

t=1

γt(j)[p log(2π) + log |∆j |].

Maximizing with respect to µj and ∆j we get [6, 79]

µj =

T?
t=1

γt(j)xt

T?
t=1

γt(j)

(2.18)

∆j =

T?
t=1

γt(j)(xt − µj)(xt − µj)
T

T?
t=1

γt(j)

. (2.19)



20 Basics of hidden Markov models

Remember that in these derivations we have considered the likelihood for a single long

sequence of observations (see 2.5). In machine learning applications, we typically have a

set of observations {Xp}, with p = 1, 2, . . . , P , to learn the parameters for each model. In

this case, the usual assumption is that each observed sequence is statistically independent

of the others, so that the obtained formulas simply take the form

µj =

P?
p=1

Tp?
t=1

γp
t (j)x

p
t

P?
p=1

Tp?
t=1

γp
t (j)

(2.20)

∆j =

P?
p=1

Tp?
t=1

γp
t (j)(x

p
t − µj)(x

p
t − µj)

T

P?
p=1

Tp?
t=1

γp
t (j)

. (2.21)

A deeper view to the EM algorithm. In previous paragraphs we described how the

EM algorithm works iteratively on an auxiliary function Q(ϑ, ϑold) in order to maximize

the likelihood function Lϑ(X). A nice presentation of this relationship is given in [6]. To

start with, let g(q) be a distibution defined over the latent (hidden) variables and assume

g(q) > 0. For any choice of g(q), we can rewrite the logarithm of the likelihood as 1

logLϑ(X) = log p(X|ϑ)

=
?

q

g(q) log
p(X,q|ϑ)

g(q)
−
?

q

g(q) log
p(q|X, ϑ)

g(q)

= L(g, ϑ) + KL(p(q|X, ϑ)||g),

where

L(g, ϑ) =
?

q

g(q) log
p(X,q|ϑ)

g(q)

KL(p(q|X, ϑ)||g) = −
?

q

g(q) log
p(q|X, ϑ)

g(q)
.

As KL(p(q|X, ϑ)||g) is the Kullback-Leibler divergence between g(q) and the posterior

distribution p(q|X, ϑ). This term is nonnegative. Thus, log p(X|ϑ) ≥ L(g, ϑ) and, L(g, ϑ)
is a lower bound for log p(X|ϑ). With these ingredients, we can think of a general EM

1To see this, decompose
?

q g(q) log
p(X,q|ϑ)

g(q) and note that
?

q g(q) log p(X|ϑ) = log p(X|ϑ).
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algorithm as a two-step iterative process where we seek to maximize the log-likelihood

log p(X|ϑ) by maximizing the lower bound L(g, ϑ) [6]:

In the E step of the EM algorithm, the bound is maximized over g(q) while

holding fixed the current estimate of the model parameters ϑold. When ϑold is

fixed, the likelihood log p(X|ϑold) is fixed and the maximum of the bound occurs

at KL(p(q|X, ϑ)||g) = 0, which gives g(q) = p(q|X, ϑold).

In the M step, g(q) is held fixed at g(q) = p(q|X, ϑold) and the lower bound is

maximized with respect to ϑ to update the current estimate ϑold. This step will

cause L(g, ϑ) to increase, unless it is already at a maximum. With these new

estimates, we expect KL > 0 since the model parameters have changed from ϑold

and thus log p(X|ϑ) > log p(X|ϑold).

Iterations are repeated until convergence. This general view of the EM algorithm has a

broader scope than we need here. But what is interesting to note is that like g(q) is fixed

at p(q|X, ϑ) in the M step, the lower bound reads

L(g, ϑ) =
?

q

p(q|X, ϑold) log p(X,q|ϑ)−

−
?

q

p(q|X, ϑold) log p(q|X, ϑold)

= Q(ϑ, ϑold) + const.

Thus, maximizing Q(ϑ, ϑold) as we did in our presentation of the EM algorithm for hidden

Markov models, is the same as maximizing L(g, ϑ) at the M step and then we see that

maximizing Q(ϑ, ϑold) amounts to maximizing the log-likelihood log p(X|ϑ).

2.3.2 Inference: Viterbi’s algorithm

The forward-backward recursions reviewed in Section 2.3.1 provide an efficient way to

compute the likelihood of an observed sequence given the model ϑ. Nevertheless, in many

cases we are interested in infering about the sequence of states which is more likely to

have generated the observed data. This amounts to find the sequence q̃ that maximizes

the joint likelihood p(X,q), so that [6, 47]

q̃ = argmax
q

T?

t=1

bqt(Xt)aqt−1qt (2.22)

The algorithm that efficiently optimizes this search is known as Viterbi’s algorithm. We

can think of it as a modification of the forward algorithm, in which instead of summing
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up probabilities from different paths coming to the same destination state (see 2.10), only

the best path is picked and remembered.

To do this, define an auxiliary variable λt(j) as

λt(j) ? max
∀qt−1

?
p
?
qt−1, qt = j,Xt |ϑ

??
; ∀j ∈ Q. (2.23)

Similarly to the forward variable, starting with λ1(i) = πibi(X1) ∀i ∈ Q, it can be

computed with the recursion

λt(j) = max
1≤i≤NQ

{λt−1(i)p(qt = j|qt−1 = i, ϑ)p(Xt|qt = j, qt−1 = i, ϑ)}

= max
1≤i≤NQ

{λt−1(i)p(qt = j|qt−1 = i, ϑ)p(Xt|qt = j, ϑ)}

= max
1≤i≤NQ

{λt−1(i)aij} bj(Xt). (2.24)

Parallel to this variable, define:

ξt(j) ? argmax
∀i∈Q

{λt−1(i)aij}.

Thus, from

q̃T = argmax
∀i∈Q

{λT (i)}

we obtain the best path q̃ using the inverse recursion:

q̃t = ξt+1(q̃t+1); t = T − 1, T − 2, . . . , 1

In many cases, the best score maxj∈Q λT (j) = p(X, q̃) is a good approximation to the

(complete) likelihood p(X|ϑ), and it is then used for classification.

2.4 Hidden Markov models in the wavelet domain

Multiscale analysis using wavelets is a well-established tool for signal and image rep-

resentation [27, 66]. The multiresolution property of the wavelet transform and its

flexibility to deal with local features simultaneously in time/space and frequency provide

a suitable scenario for many signal processing and pattern recognition tasks. Initial in-

terest in these representations was largely driven by powerful non-linear methods which

relied on simple scalar transformations of coefficients [30]. Many posterior developments

kept in mind the idea of some decorrelation property of the wavelet transform or assumed

very simple statistical models for the coefficients. Nevertheless, in practical applications

signals and images usually show sparse representations and some structural dependence
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between coefficients which cannot be described with such models. Simply speaking, coef-

ficients typically are not normally distributed and large ones tend to form clusters along

scales and to propagate across scales [66]. Because of this, both coefficients magnitude

and statistical dependencies between them carry relevant information about signals and

their underlying distribution.

These features can be exploited for pattern recognition, but the joint distribution of the

coefficients is needed. While complete knowledge of this probability is infeasible, we can

replace it with a suitable model that accounts for the main properties of the representation

while remaining simple enough and computationally tractable. If we succeed in doing this,

we can use these models straightforwardly for statistical pattern recognition, without the

need of specific feature extraction procedures that can loss important information.

2.4.1 The discrete wavelet transform

We measure a signal with the aim to extract some useful information from it. The

measurement process is usually done in a way that is convenient technologically, but the

information within the measured signal can be difficult to interprete. Thus, we look for

a transformation of the signal so that the new representation allows us to easily extract

the information.

Wavelet analysis has shown to provide useful representations of signals and images in

many applications. There are several different transforms commonly grouped as wavelet

transforms [66]. In all of them, each coefficient or atom of the decomposition provides

a local weighted average of the signal at certain scale and interval of time. Thus, we

can think of these transforms as providing a mapping of a signal onto a time-scale plane.

Different wavelet transforms differ in the partition they induce on that plane.

In this thesis we work with the DWT, which provides an orthogonal decomposition for

vectors in RN . It can be computed very efficiently [66] and induces a dyadic partition

of the time-scale plane that allows for representing the obtained coefficients naturally

as a binary tree. This structure helps to make computations very efficient, which is an

important factor in applications.

To briefly describe this transformation, assume z ∈ RN , with N = 2J , is the sampled

measured signal2. The DWT of z is w = Wz, where W is an N ×N matrix defining the

2The condition that the length of z be a power of two is too restrictive and can be remove in practice,

but we keep it here for ease of exposition.
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transformation and satisfying WTW = IN . Particular values for this matrix depends on

the wavelet filters chosen for the anlysis. The nth coefficient of w, wn, is a local average

over a particular scale and a particular set of times. From the orthogonality of the

transform, w2
n mesures the energy of the signal at that scale and interval of times. Then,

w represents a multiresolution decomposition of z at scales τj = 2j−1, for j = 1, 2, . . . , J .

The analysis gives N/(2τj) coefficients at each scale and they can be arranged so that

coefficients belonging to the same scale of analysis are adjacent in w. Furthermore, two

adyacents rows of W that corresponds to the same scale j are circularly shifted versions

of each other by an amount 2j .

Computations are perfomed very efficiently using the pyramidal algorithm [66]. The

obtained representations tend to be sparse, meaning that a few coefficients concentrate

most of the energy of the signal. From an statistical point of view, it means that if we

regard the coefficients as realizations of a random process, their marginal density is often

very sharp near zero; that is, the kurtosis of their distribution is greater than for the

normal density.

Another key property of the wavelet transform is locality. It accounts to the fact

that each atom of the decomposition is concentrated simultaneously in time and in

scale/frequency. As stated above, each coefficient carries the energy of the signal in

a given region of the time-scale plane. The tilling of the plane induced by the DWT is

shown in Figure 2.4, with each rectangle being related to a given coefficient in the rep-

resentation. Note that the area of the rectangles is constant for all of them. If we colour

the rectangles according to the squared magnitud of the associated coefficients, we obtain

a graph known as scalogram. A main feature of the wavelet representations of real-world

signals and images is that this graph often shows clusters of coeffcients for which their

magnitud is large, as well as this trend in intensity tending to propagate across scales,

something that is frequently referred to as the persistance property of the transform.

If we are to use some statistical model of the wavelet coeffcients, we should account

for the properties just discussed. We discuss next a parsimonious model that does this.

2.4.2 Hidden Markov trees

Crouse et al. [24] proposed a multiresolution Markov model to concisely account

for properties of wavelet representations of signals and images. In their framework, the

marginal probability of each coefficient is modeled as a Gaussian mixture driven by a
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Figure 2.4. Eschematics of the HMT model. A hidden latent variable

(shadowed circles) is associated to each rectangle in the time-frequency

plane and Markovian dependences are set between them. The state of

the latent variable determines the parameters of the normal distributions

related to the observed coeffcients linked to them. Thus, the observed

coeffcients (white circles) are assumed conditional independent of the other

variables and their marginal distribution is a mixture of normal densities.

hidden state variable. While the mixture accounts for sparseness, markovian relation-

ships between hidden states allow for describing dependencies between coefficients. The

resulting structure is then a hidden Markov model on the wavelet domain which exploits

the natural tree structure of DWT, and it is usually referred to as hidden Markov tree

(HMT). Figure 2.4 shows a diagram of the model. Other multiresolution Markov models

are reviewed in [89], with an emphasis in signal and image processing. Some of them

do not use latent variables but set statistical dependencies between wavelet coefficients

directly. Nevertheless, many of these models are targetted to specific applications and

could be described only in those contexts. Throughout this thesis we will focus only in

the HMT, which has been found useful in a broad range of applications concerning both

signals and images.

Let w = [w1, w2, . . . , wN ], with wu ∈ R, be the observed features, which result from

a DWT analysis of the signal with J scales and discarding w0, the approximation co-

efficient at the coarsest scale. From the partition of the time-scale plane induced by

the transformation, the random vector of coefficients wt can also be indexed as a tree

rooted in w1. Associated with each wavelet coefficient, there is a latent (hidden) variable
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ru. Thus, associated with the vector of coefficients w there is a vector of hidden states

r = [r1, r2, . . . , rN ] that can also be indexed as tree rooted in r1. Each latent variable ru
takes values in the set {1, 2, . . . , K}. We will usually refer to u = 1, 2, . . . , N as nodes.

For u = 2, . . . , N , ρ(u) will denote the parent node of u. In addition, if u is not a leave

of the tree structure, Cu = {c1(u), . . . , cNu(u)} will denote the set of children nodes of u.

Note that for a dyadic tree resulting from a DWT analysis, each non-terminal node has

two children. These variables are said to define a HMT provided they fulfil the following

assumptions [33]:

1. ∀u ∈ {1, 2, . . . , N}, the marginal distribution of wu is a mixture

p(wu = w) =
K?

k=1

p(ru = k)fu,k(w),

where fu,k(wu) = p(wu|ru = k).

2. Markov tree property for the latent variables

p(ru = m| {rv/v ?= u}) = p(ru = m|rρ(u)).

3. The observed coefficients depend on the state of the latent variables, not on the

rest of coefficients

p(w1, . . . , wN |r1, . . . , rN ) =
N?

u=1

p(wu|r1, . . . , rN ).

4. The observed coefficients depend only on the state of the latent variable associated

to them in the corresponding node of the tree

p(wu|r1, r2, . . . , rN ) = p(wu|ru), ∀u.

Note that the last two assumptions resemble the conditional independence property of

usual HMM as discussed in Section 2.2. The dependence structure of the HMT is shown

in Figure 2.5.

Similarly to a conventional HMM, the HMT is characterized for the set of parameters

θ = ({κm}, {?u,mn}, {fu,m}), where κm = p(r1 = m|θ), ?u,mn = p(ru = m|rρ(u) = n, θ),

and fu,m = p(wu|ru = m, θ) as defined previously. Usually, fu,m is assumed normal.

Despite the similarities with conventional HMM, there are some important differences

between them and HMT that are important to note. First, there is not a temporal

notion in the HMT. All wavelet coeffcients are observed simultaneously. Second, though

the state-transition probabilities ?u,mn are often assumed independent of the node u, this

assumption is usually stronger than in the homogeneous conventional HMM and aims

mainly at reducing the number of parameters in the model. This is an example of strong

parameter tying that is found frequently in signal processing applications. Nevertheless,
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Figure 2.5. Graphical-model representation of a HMT. Only a part of

the tree is shown.

in machine learning we often have a set of training signals for parameter estimation and we

can hope to learn larger models keeping the variance of parameter estimates acceptable.

Likelihood of the HMT. From the assumptions stated above, the likelihood Lθ(w) =

p(w|θ) for the HMT model reads [24]

Lθ(w) = p(w1, . . . , wN |θ)
=
?

∀r
p(r1, . . . , rN , w1, . . . , wN |θ)

=
?

∀r
p(r1, . . . , rN |θ)p(w1, . . . , wN |r1, . . . , rN , θ), (2.25)

where the summation is over all possible combinations of states r in the nodes of the tree.

The first factor in each term of the summation represents the probability of each of those

combinations of states. From the Markov property of the tree, we have

p(r1, . . . , rN |θ) = p(r1|θ)
N?

u=2

p(ru|rρ(u), θ)

= πr1

N?

u=2

?u,rurρ(u) (2.26)
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The second factor in each term of the summation can be simplified using the conditional

independence assumptions for the HMT, reading

p(w1, . . . , wN |r1, . . . , rN , θ) =
N?

u=1

p(wu|r1, . . . , rN , θ)

=
N?

u=1

p(wu|ru, θ)

=
N?

u=1

fu,ru(wu). (2.27)

Replacing back in the likelihood and letting ?1,r1rρ(1) = πr1 , we get

Lθ(w) =
?

∀r
πr1

N?

u=2

?u,rurρ(u)

N?

u=1

fu,ru(wu)

=
?

∀r

N?

u=1

?u,rurρ(u)fu,ru(wu). (2.28)

We see that this expression for the likelihood of the HMT resembles that for the standard

HMM. Nevertheless, we must keep in mind that transition probabilities in the time-

domain HMM have very different meaning than time-scale transitions in the HMT.

As with conventional HMM, there are three basic problems related to the HMT: effi-

cient likelihood computation; parameter estimation; and inference of the best combination

of states for the latent variables in the tree.

Parameter estimation. Parameters in the HMT model θ are estimated using an

adapted EM algorithm [24, 33]. To start with, note that the maximizing the likelihood

given a learning set {w?} of independent random vectors w? is identical to iteratively

maximizing the auxiliary function

Q(θ, θold)({w?}) = Ew

?
Ep(r|w?,θold)

?
log p(w?, r|θ)

??

=
?

?

?

u

?

m

?

n

ξ?u(m,n) log ?u,mn +

+
?

?

?

u

?

m

γ?
u(m) log fu,m(w

?
u),
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where we have used the definitions

ξ?u(m,n) ? p(ru = m, rρ(u) = n|w?, θold) (2.29)

=
p(w?, ru = m, rρ(u) = n|θ)

p(w?|θ) ,

γ?
u(m) ? p(ru = m|w?, θold) (2.30)

=
p(w?, ru = m|θ)

p(w?|θ) .

The E step involves computing ξ?u(m,n) and γ?
u(m). This can be done efficiently using

upward and downward recursions through the tree that are defined similarly to the for-

ward and backward variables described for conventional HMM. The algorithm was first

proposed in [24] and improved in [33]. We describe it in a way it is easy to compare it

with the conventional forward-bacward algorithm. Further details are given in [33].

Let Tu be the subtree of observed wavelet coefficients rooted in node u, so that T1 is

the complete observed tree, and let Tu?v be the subtree rooted in u so that the coefficients

in Tv are also in Tu but not in Tu?v (see Figure 2.5). Define

αu(n) ? p (T1?u, ru = n |θ ) , (2.31)

βu(n) ? p (Tu |ru = n, θ ) , (2.32)

βρ(u),u(n) ? p
?
Tu

??rρ(u) = n, θ
?
. (2.33)

Variables βu(n) and βρ(u),u(n) are computed recursively going upward through the tree

from the leaves to the root node, while αu(n) is computed recursively going downwards

throughout the tree. The recursions can be obtained as [24]

βu(n) = p (Tu |ru = n, θ )

=




?

v∈C(u)

p (Tv|ru = n, θ)



 p (wu|ru = n, θ)

=




?

v∈C(u)

βu,v(n)



 fu,n(wu), (2.34)
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where we have

βρ(u),u(n) = p
?
Tu

??rρ(u) = n, θ
?

=
M?

m=1

p (Tu|ru = m, θ) p
?
ru = m|rρ(u) = n, θ

?

=
M?

m=1

βu(m)?u,mn. (2.35)

These recursions are initialized with βv(n) = fv,n(wv) for all v in the smallest scale. Then,

these values are used to compute the initial values for βρ(v),v(n) for that smallest scale

an these are then used to compute βv(n) for the upper scale. The procedure is repeated

until reaching the coarsest scale at the root node of the tree.

Similarly, αu(n) can be computed with the recursion

αu(n) = p (T1?u, ru = n |θ ) =

=
M?

m=1

p
?
ru = n, rρ(u) = m, T1?ρ(u), Tρ(u)?u|θ

?

=
M?

m=1

p
?
ru = n|rρ(u) = m, θ

? p
?
Tρ(u)|rρ(u) = m, θ

?

p
?
Tu|rρ(u) = m, θ

? ·

·p
?
T1?ρ(u), rρ(u) = m|θ

?

=
M?

m=1

?u,nmβρ(u)(m)αρ(u)(m)

βρ(u),u(m)
. (2.36)

This recursion is initialized with α1(m) = p(r1 = m|θ) = κm. Note that using these

variables, the likelihood of the model can be computed efficiently as

p(w|θ) = p(T1|θ)

=
M?

n=1

αu(n)βu(n) (2.37)

Note also that this computation does not depend on the node u chosen for splitting the

tree.

Using these variables, the E step of the EM algorithm for HMT reduces to compute

ξ?u(m,n) =
βu(m)?u,mnαρ(u)(n)βρ(u)(n)/βρ(u),u(n)

M?

n=1

αu(n)βu(n)

,
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γ?
u(m) =

αu(m)βu(m)
M?

n=1

αu(n)βu(n)

.

These quantities remain fixed in the M step to update the model parameters. The estate-

transition probabilities in the HMT model are estimated by maximizing

Q? =
?

?

?

u

?

m

?

n

ξ?u(m,n) log ?u,mn,

with the constraint
M?

m=1

?u,mn = 1. (2.38)

We obtain [24, 33]

?u,mn =

L?

?=1

ξ?u(m,n)

L?

?=1

γ?
ρ(u)(n)

. (2.39)

Assume now that we model each conditional density fu,m(w
?
u) with a normal distribu-

tion with parameters µu,m and σ2
u,m. This is a scalar density p(w?

u = w|ru = m, θ) =

N (w|µu,m, σ
2
u,m). Estimation of the set of parameters {µu,m, σ

2
u,m}u,m,n is carried out by

maximizing the auxiliary function

Qf (θ, θ
old)({w?}) =

?

?

?

u

?

m

γ?
u(m) log fu,m(w

?
u)

= −1

2

?

?

?

u

?

m

γ?
u(m)

?
(w?

u − µu,m)
2

σ?
u,m

+ B

?
,

with B = log 2π + log σ2
u,m. We obtain [24, 33]

µu,m =

L?

?=1

γ?
u(m)w?

u

L?

?=1

γ?
u(m)

, (2.40)

σ2
u,m =

L?

?=1

γ?
u(m)(w?

u − µu,m)
2

L?

?=1

γ?
u(m)

. (2.41)
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Inference in the HMT. Like in the case of standard HMM, we are often interested

in inferring about the most probable sequence of states in the nodes of the tree that

has generated the oberved set of wavelet coefficients; that is, given w, we look for the

sequence of states r̃ so that

r̃ = argmax
r

p(r|w, θ). (2.42)

The specific algorithm for the HMT was first introduced by [33], but is analogous to

Viterbi’s algorithm for HMM presented above. In particular, the algorithm turns out to

be a modified upward recurssion, where the summation in 2.35 is replaced by taking the

maximum over the sates. In this way, the algorithm starts by initializing the variables

λu(m) = βu(m) in the nodes u that corresponds to leaves of the tree. From this point,

the following quantities are computed upwards the tree for each scale

λρ(u),u(n) = max
1≤m≤M

βu(m)?u,mn, (2.43)

ξu(n) = argmax
1≤m≤M

βu(m)?u,mn, (2.44)

λu(m) = fu,m(wu)
?

v∈C(u)

λρ(u),v(m). (2.45)

The recurssion ends at the root node of the tree. Then, starting with

r̃1 = argmax
1≤m≤M

λ1(m),

for u = 2, 3, . . . , N we do

r̃u = ξu(r̃ρ(u)). (2.46)

Limitations. In last years the HMT model has received considerable attention for

several applications, including signal processing [31, 42, 82], image denoising [57, 58, 77,

83], texture classification [73, 80], computer vision [37, 93] and writer identification [45].

For classification tasks, however, it can deal only with static patterns. This limitation

arises from the use of the discrete wavelet transform (DWT), which makes the structure of

representations depend on the size of signals or images. To overcome this we could think of

tying parameters along scales, but it would come at the price of reducing modeling power.

In a typical scenario for pattern recognition we have multiple observations available and

we would want to use the whole information in order to train a full model. In these cases,

the HMT should be trained and used only with signals or images with the same size;

otherwise, a warping preprocessing would be required to match different sizes and that

would be difficult to achieve on-line.
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Figure 2.6. The HMM-HMT model. A left-to-right hidden Markov

model uses hidden Markov trees as models for the observed data in the

wavelet domain.

2.4.3 Dealing with sequential data: the HMM-HMT model

A composite Markov model in the wavelet domain was introduced by Milone et al.

[72] to deal with length variability in the observed sequences. The approach exploit the

probabilistic nature of the HMT to embed it as the observation model for a standard

HMM. An adapted version of the EM algorithm was derived to drive the parameter

estimation of fully coupled models. The resulting structure is a composite hidden Markov

model in which the HMT accounts for local features in a multiresolution framework while

the external HMM handles dependencies in a larger time scale and adds flexibility to deal

with sequential data. With this model, signals are seen as realizations of a random process

which emits wavelet coefficients in a short term basis driven by a Markov chain. The

emitted coefficients are not independent, but obey probabilistic dependencies structured

as a tree.

To clarify, let us briefly describe this composite model. Let wt ∈ RN be the set of

coefficients emitted at time t and W = {w1, . . . , wT} be the entire sequence of vectors

of coefficients resulting from the DWT analysis. The observation is modeled by a HMM

with a structure as defined in Section 2.1. In the assumed model, for every state k of

the chain, observed coefficients are drawn from a HMT, so that bk (w
t) is itself a hidden

Markov structure. Figure 2.6 shows a sketch of the full model.

We recall that the observed coefficients wt
u are drawn from an observation model

fu,m(w
t
u) conditioned on the state m of the node. We assume scalar Gaussian mod-

els N (wt
u|µu,m, σ

2
u,m) for all of them. Finally, we will use superscript k to indicate the

parameters of the HMT model θk that serves as observation model bk (w
t) for the HMM.
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Model likelihood and parameter estimation. Replacing (2.28) in (2.5), the likeli-

hood for the composite HMM-HMT model given a single obseved sequence W is:

Lϑ(W) =
?

∀q

?

t

aqt−1qtbqt(w
t)

=
?

∀q

?

t

aqt−1qt

?

∀r

?

∀u
?q

t

u,rtur
t
ρ(u)

f qt

u,rtu
(wt

u)

=
?

∀q

?

∀R

?

t

aqt−1qt

?

∀u
?q

t

u,rtur
t
ρ(u)

f qt

u,rtu
(wt

u),

(2.47)

where we have assumed a left-to-right HMM. In these expressions, ∀q denotes that the

sum is over all possible state sequences q = q1, q2, . . . , qT in the external HMM and ∀R ac-

counts for all possible sequences of all possible combinations of hidden states r1, r2, . . . , rT

in the nodes of each tree.

Parameters in the HMM-HMT model are estimated using an adapted version of the

EM algorithm [72, 71]. The re-estimation formulas turn to be extensions of those stated

previously for the HMT and HMM. We present the final results here, further details can

be found in [72]. Assume we have P independent training sequences in the learning set,

each with a number Tp of correlated observations. We have

State-transition probbilities in the HMTs:

?ku,mn =

P?

p=1

Tp?

t=1

γp,t(k)ξp,tku (m,n)

P?

p=1

Tp?

t=1

γp,t(k)γp,tk
ρ(u)(n)

. (2.48)

Means of the conditional normal models in the HMTs:

µk
u,m =

P?

p=1

Tp?

t=1

γp,t(k)γp,tk
u (m)wp,t

u

P?

p=1

Tp?

t=1

γp,t(k)γp,tk
u (m)

. (2.49)
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Variances of the conditional normal models in the HMTs

(σk
u,m)

2 =

P?

p=1

Tp?

t=1

γp,t(k)γp,tk
u (m)

?
wp,t

u − µk
u,m

?2

P?

p=1

Tp?

t=1

γp,t(k)γp,tk
u (m)

. (2.50)

where γp,tk
u (m) and ξp,tku (m,n) are computed as described for general HMM.

2.5 Concluding remarks

In this chapter we have reviewed the basics of HMM and have described briefly these

models with two types of observation densities: Gaussian distributions and HMTs. Like-

lihood computation, parameter estimation and inference have been discussed for both

of these models. Parameter estimation for gaussian HMM will be revisited when we

discuss sufficient dimension reduction methods for hiden Markov models. On the other

hand, learning parameters of HMM-HMT models under maximum likelihood estimation

will provide us the initial values for the iterative discriminative training procedure we

develope in Chapter 3.





CHAPTER 3

Discriminative training of HMM in the

wavelet domain

3.1 Introduction

Discriminative training of HMM has been a topic of intense research in recent years

[44, 43, 51]. HMM-based classifiers designed in this way have shown to outperform

their ML-based counterparts in many applications [13]. Most of these works deal only

with standard HMM with Gaussian densities as observation models [13, 53, 1]. On the

other hand, the HMM-HMT reviewed in Section 2.4.3 achieved promising results both for

pattern recognition and for denoising tasks [71, 72]. Nevertheless, training algorithms

used so far provide ML estimates for the parameters of this model.

The goal of this chapter is to take the MCE learning approach to this different scenario

in which data is observed in the wavelet-domain and modeled through the HMM-HMT,

aiming at improving the performance of these models for classification tasks.

3.2 MCE approach for classifier design

The classification rule Y = f(W) usually depends on a parameterized set of functions

or models, one for each class, which measure the degree of membership of the observation

37
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W to that class. Let {gj(W; Θ)}h
j=1 be that parameterized set of functions for a classifi-

cation task comprising h classes c1, c2, . . . , ch, and Θ = {ϑj}Mj=1 be the whole parameter

set. An unlabeled observation W will be assigned to class ci when

f(W; Θ) ? argmax
j

{gj(W; Θ)} = i . (3.1)

The classifier design involves the estimation of an optimum parameter set Θ∗ that mini-

mizes the expected classification error over all the observation space.

In traditional generative learning, gj(W; Θ) is set to the joint distribution of (ϑj ,W)

and maximizing (3.1) amounts to maximizing ϑj |W. Then, by the Bayes rule, the model

for each class can be trained by maximizing the likelihood W|ϑj using a training sample

from class cj only. On the other hand, in discriminative learning all models are updated

simultaneously in a competitive way. This process aims to exploit differences between

classes that can lead to a reduction in the error rate of the classifier. In MCE training

in particular, minimization of the classification error is set formally as a goal. We now

summarize the main topics of the method and provide simulation examples with a simple

Gaussian model in order to motivate our developments.

3.2.1 Derivation of the MCE criterion

The main ingredient of the MCE approach for classifier design is a soft approximation

of the misclassification risk over the set of samples available for training. Although in

advance we would not guarantee minimum expected error over all possible observations

working just on a finite (possibly small) training set, the method has shown to generalize

well over validation sets [68, 90]. Recent works have also explained the generalization

property of MCE methods by linking them with large margin estimation [51, 69].

For an observation W, the conditional risk of misclassification is given by

R(Θ|W) =
M?

j=1

?(f(W; Θ), cj)P(cj |W),

where ?(f(W; Θ), cj) is a loss function which penalizes a wrong decision when classifying

an observation W from class cj . The usual choice for the loss function is the zero-one

loss which assigns ?(f(W), cj ; Θ) = 1 for f(W) ?= cj and zero for correct classification

[32]. In the training process, we look for a parameter set Θ∗ that minimizes the risk
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R(Θ) =

? M?

j=1

?(f(W; Θ), cj)P(cj |W)dP(W),

where the integral extends over the entire sequence space. Nevertheless, when designing

a classifier we only have the labeled observations in the training set. Let Ωj stand for

the subset of observations in the training set which belong to class cj . The expectation

above can be replaced with an average of the loss with all the observations given equal

probability mass

R̃(Θ) =
1

S

S?

s=1

h?

j=1

?(f(Ws; Θ), cj)I(Ws ∈ Ωj).

In the equation above I(·) is the indicator function and S is the size of the training set.

The MCE approach minimizes a smoothed version of this empirical risk which is

differentiable respect to model parameters [53]. Let us write this approximation as

?(f(W; Θ), cj) = ?(dj(W; Θ)), where function dj(W; Θ) simulates the decision of the

classifier. Assume the current training observation comes from class ci. A common

choice for ?(di(W; Θ)) is the sigmoid [13, 53]

?(di(W; Θ)) =
1

1 + exp (−γdi(W; Θ) + β)
. (3.2)

Parameter γ controls the sharpness of the sigmoid and the bias β is usually set to zero. To

complete the picture we must specify the function di(W; Θ), which is often referred to as

the misclassification function [13, 53, 54]. In order to allow ?(di(W; Θ)) to behave close

to the zero-one loss, it must give a large enough positive value for strongly misclassified

observations and a small negative value when the decision is right. In addition, very

confusing samples should give a value close to zero so that their related loss fall in the

raising segment of the sigmoid. Remembering (3.1), an obvious candidate for di(W; Θ)

is

di(W; Θ) = max
j ?=i

{gj(W; Θ)} − gi(W; Θ) .

However, the maximum operation is not differentiable. As we are looking for a smoothed

version of the risk, what is used in practice is a soft approximation like an ?p-norm with p

large. However, different selections of the misclassification function are possible (see, for
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example, [54]) and they can have important effects on the performance of the algorithm

as we will see below.

3.2.2 Optimization

In the preceding section we have described the approximation of the empirical risk

which serves as the optimization criterion for MCE learning. The simplest approach to

find the parameter estimates is a gradient-based optimization technique often known as

Generalized Probabilistic Descent (GPD), which is a special case of stochastic approx-

imation [13, 14, 54]. This is simply an on-line scheme which aims at minimizing the

smoothed approximation of the classification risk by updating the whole set of parame-

ters Θ in the steepest-descent direction of the loss. Starting from an initial estimate Θ̂0,

the τ -th iteration of the algorithm can be summarized as

Θ̂ ←− Θ̂− ατ ∇Θ?(Wτ ; Θ)|Θ=Θ̂τ
, (3.3)

where ατ is the learning rate, that is allowed to decrease gradually as iterations proceed

in order to assure convergence [54]. Usually, Θ̂0 is chosen to be the ML estimate of Θ and

the updating process is carried out for each training signal [13], so that Wτ is actually the

sequence picked up from the training set at the τ -th iteration. Batch implementations can

also be used to exploit parallelization [51, 68]. It is important to see that the derivative of

(3.2) on di(W,Θ) is symmetric around zero when β = 0. As a consequence, the strength

of the update depends on how confusing the training observation is to the classifier and

not on the correctness of the decision. This way, patterns that are similarly likely to

belong to different classes induce the update of the parameter set, even if they are well

classified.

3.2.3 An example with Gaussian models

In order to show the potential of discriminative learning over traditional ML estimation

of model parameters, let us consider a simulation example for a binary classification

problem. We assume Gaussian models for both classes, but allow data from one of

them, say class A, to be drawn actually from a two-component Gaussian mixture, with

parameters µA1 = −2.5, σ2
A1 = 4, µA2 = 9, σ2

A2 = 9 and weights 0.9 and 0.1, respectively.
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Figure 3.1. Distribution of the data for the proposed experiment. The

solid line shows the distribution of class A while the dotted line shows the

one of class B.
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Figure 3.2. Recognition rates over the testing set as a function of the

number of MCE iterations. Shown scores are averages over ten runs for

each tested condition.

This is a simple example of a model not fitting the real distribution of observed data. To

make the decision task more difficult, suppose also that the real distribution of class B

data is a Gaussian with mean and variance very close to the global mean and variance

for class A. Figure 3.1 illustrates the proposed situation. It is clear that this is a very

demanding task for a quadratic classifier based on ML estimation. In fact, we expect it

to discriminate very poorly and we are interested in seeing how much improvement can

the MCE approach achieve.
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Figure 3.3. Comparison of the trained classifiers, showing the models

they use for classification. a) Models obtained with maximum likelihood

estimation. b) Models obtained with MCE training after five iterations

over the whole training set. Solid lines show the model for class A and

dotted lines show the one for class B.

Ten runs were carried out for each training method. For every run, data was generated

randomly for class A first and its sample mean and variance were used to generate data

from class B, setting µB = µ̂A + 0.25 and σ2
B = ?σ2

A. A thousand samples from each class

were used in both the training set and a separate testing set. ML estimates were used

as initial guesses for the discriminative training, and standard settings were used for the

MCE criterion [1]. Obtained results varying the number of MCE iterations are shown in

Figure 3.2. It can be seen that an important improvement in recognition rate is achieved

after just a few iterations of the algorithm. After five iterations, the discriminative

approach reduces the error rate from 38% to 31%. Further iterations do not seem to

provide significant improvements for this case.

Figure 3.3 compares the trained models obtained with maximum likelihood only against

those estimated discriminatively. The competitive updating process modifies initial model

parameters so that the Gaussian for class A concentrates around the mean for the most

likely component in the original mixture. On the other hand, the model for class B widens

a lot to account for all other values in data. The final models used for classification are

very different from the real data distributions. Thus, unlike with the ML approach,

obtained parameter estimates do not try to explain the data but only to improve the

classifier performance emphasizing differences between distributions.
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3.3 Algorithm formulation

It is clear from our discussion of the general aspects of the MCE/GPD approach in Sec-

tion 3.2 that the key points to be defined when designing a classifier under this framework

are: i) the parametrized form for the discriminant functions; and iii) the misclassifica-

tion function di(W; Θ). If an unconstrained optimization algorithm like GPD is to be

used, suitable transformations of the parameters must also be introduced to account for

constraints. We will follow rather conventional choices for i) and for transformation of

parameters in Section 3.3.1, but we will go apart from the mainstream when considering

ii) in Section 3.3.2. Updating formulas are outlined in Section 3.3.3, while details about

their derivation are left to Appendix A.

3.3.1 Discriminant functions and parameter transformations

For a HMM-based discriminant function approach to pattern recognition, it is a usual

practice to define gj(W; Θ) as a function of the joint likelihood Lϑj
[13]. In particular,

due to the efficiency of Viterbi’s decoding algorithm for both HMM and HMT, it is

attractive to define

gj(W; Θ) =

????log
?
max
q,R

?
Lϑj

(W,q,R)
?????? (3.4)

= −
?

t

log aq̄t−1q̄t −
?

t

?

∀u
log ?q̄

t

u,r̄tur̄
t
ρ(u)

−
?

t

?

∀u
log f q̄t

u,r̄tu
(wt

u) ,

where | · | denotes absolute value and q̄t and r̄t refer to states in the external HMM and

the corresponding HMT model, respectively, that achieve maximum joint likelihood. It

should be noticed that this definition involves a little change in what we have said about

the decision of the classifier in (3.1). Now this decision is ruled by the minimum (rather

than the maximum) of the discriminant functions, valued at the unlabeled observation.

Despite of discriminant functions using standard model parameters, we must introduce

some parameter transformations to account for restrictions if we are to use a gradient-

based optimization technique such as GPD [13, 53]. To constrain aij to be a probability,

we define ãij so that
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asj =
exp ãsj?
m exp ãsm

. (3.5)

Exponentiation assures aij is non-negative and normalization makes it less or equal to

one. A similar transformation is needed for the transition probabilities in the internal

HMTs. With analogous arguments, we define ?̃ku,mn so that

?ku,mn =
exp ?̃ku,mn?
p exp ?̃

k
u,pn

. (3.6)

We also need to constrain the Gaussian variances to be positive-valued. To do so, we

define σ̃k
u,m so that σ̃k

u,m = log σk
u,m. In addition, we scale the means of the Gaussian

distributions as µ̃k
u,m = µk

u,m/σ
k
u,m. This is done to reduce the range of values that the

parameters can take, so that the same learning rate can be used for all of them [53].

Note that these transformations are rather standard in the literature [13, 53].

3.3.2 Misclassification function

For HMMs with Gaussian mixture observations and discriminant functions defined

as the negative of those stated above, the frequent choice for MCE training has been

simulating the decision of the classifier with the function [13]

d̃i(W; Θ) = −g̃i(W; Θ) + log

?
1

h− 1

?

j ?=i

eg̃j(W;Θ)η

?1/η
. (3.7)

As η becomes arbitrarily large the term in brackets approximates, up to a constant, the

supremum of {g̃j(W; Θ)} for all j different than i. This definition of the misclassifica-

tion function, composed with a zero-bias approximation to the zero-one loss, penalizes

confussing patterns rather than a wrong classifcation. Thus, a strong decision of the

classifier implies no update of the parameter set, whether this decision is right or not.

Despite it can look counterintuitive at first, it is in fact a conservative statement which

avoids modifying parameter estimates due to bad data.

Nevertheless, likelihoods for the HMT model are tipically much smaller than those

found for Gaussian mixtures in standard feature spaces. We can expect this noting

that the joint likelihood for the HMM-HMT model involves many products which are

probabilities often being very small. As a result, gj(W; Θ) takes extremely low values
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for W /∈ Ωj and the exponentiation leads to numerical underflow. A natural option to

look for a similar behaviour of the misclassification function but avoiding those numerical

issues is to define it as

d̄i(W; Θ) = gi(W; Θ)−
?

1

h− 1

?

j ?=i

gj(W; Θ)−η

?−1/η

. (3.8)

Roughly speaking, both of these functions account for the decision margin between the

true model and the best competing ones. They weight rival candidates, but do not

introduce any special corrective penalty in case of a wrong classification. Because of this,

we will refer to them as symmetric misclassification functions and will use the acronym

SMF to refer to (3.8) in what follows.

Due to the behaviour of the likelihoods for the HMM-HMT model discussed above,

also their dispersion is much larger than in the Gaussian mixture-HMM case. In this

situation, similarity could be better measured comparing the order of magnitude between

discriminant functions rather than their difference. To do so, we define an alternative

form for discriminant functions as

di(W; Θ) = 1−

?
1

h−1

?
j ?=i gj(W; Θ)−η

?−1/η

gi(W; Θ)
. (3.9)

As above, η is supposed to be a large positive scalar so that the sum in the numerator

approaches the minimum of the terms as η grows. When the classifier takes a right

decision, this minimum will be larger than gi(W; Θ) and di(W; Θ) will take a negative

value as required. If the observation makes decision hard for the classifier, di(W; Θ) will

be close to zero. However, it must be noticed that di(W; Θ) will take no value larger

than one. This implies that all misclassified observations will fall in the raising segment

of the approximation to the zero-one loss if it is not too sharp. This simple fact has a very

important effect in practice because it determines that every misclassified observation in

the training set induces an update of the parameter set. To stress this lack of symmetry

in dealing with correct and wrong classifications, we will refer to (3.9) as a no-symmetric

misclassification function and will use the acronym nSMF to denote it in the following.
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3.3.3 Updating formulas

In the following, let assume that the τ -th training sequence Wτ belongs to Ωi. To

simplify notation, allow ?i, dj and gj stand for ?i(dj(W; Θ)), dj(W; Θ) and gj(W; Θ),

respectively. For convenience, define also

ζii ?
d?i
ddi

∂di

∂gi
,

and

ζij ?
d?i
ddi

∂di

∂gj
,

where in the last expression we assume i ?= j. For the misclassification function SMF,

these quantities take values

ζii = γ?i(1− ?i) (3.10)

ζij = γ?i(1− ?i)(di − gi)
g−η−1
j?
k ?=i g

−η
k

. (3.11)

Note that for a binary classification problem these quantities have the same absolute

value but opposite sign. For the misclassification function nSMF, we have

ζii = γ?i(1− ?i)
di − 1

gi
(3.12)

ζij = γ?i(1− ?i)(1− di)
g−η−1
j?
k ?=i g

−η
k

. (3.13)

Again, ζii and ζij always have opposite sign, but their absolute value it is not the same

even for a two-classes only task.

The updating process works upon the transformed parameters to assure the original

ones remain in their feasibility range. For the Gaussian mean associated to the state m

in the node u of the HMT linked to the state k of the HMM for class cj , the updating

step is given by

µ̃(j)k
u,m ←− µ̃(j)k

u,m − ατ
∂?i

∂µ̃
(j)k
u,m

?????
Θ=Θ̂τ

, (3.14)

where Θ̂τ refers to the estimates of parameters obtained in the previous iteration. Ap-

plying the chain rule of differentiation and using the variables defined above, we get (see

details in Appendix A):
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µ̃(j)k
u,m ←− µ̃(j)k

u,m − ατζ
?

t

δ(q̄t − k, r̄tu −m)

?
wt

u − µ̂
(j)k
u,m

σ̂
(j)k
u,m

?
, (3.15)

where ζ takes the value ζii or ζij depending on whether we are dealing with a training

pattern from the same class as the model or not. The delta function δ(·, ·) is typical of
Viterbi decoding. As the factor in brackets depends on the time frame through wt

u, this

function states that we only consider for the updating process the standardized observed

coefficient for the node in those frames when the most likely state in the external model

is k and the most likely state in the node is m. Then, to restore the original parameters

we just compute µ
(j)k
u,m(τ + 1) = σ

(j)k
u,m(τ )µ̃

(j)k
u,m(τ + 1). The updating process for Gaussian

variances is completely analogous to the one shown above for the means. The working

expression for training reads:

σ̃(j)k
u,m ←− σ̃(j)k

u,m − ατζ
?

t

δ(q̄t − k, r̄tu −m)



?
wt

u − µ̂
(j)k
u,m

σ̂
(j)k
u,m

?2

− 1


 , (3.16)

where ζ and δ(·, ·) have the same meaning as above. Once again, Viterbi decoding acting

on the Markovian dependencies decouples all the nodes and the final formula resembles

just the derivative of a log-normal on its standard deviation. Then, original variances are

restored doing σ
(j)k
u,m(τ + 1) = exp(σ̃

(j)k
u,m(τ + 1)).

The above strategy works for updating the transition probabilities too. It is shown in

Appendix A that the updating formula for the transformed probability ?̃
(j)k
u,mn reads:

?̃(j)ku,mn ←−?̃(j)ku,mn − ατζ

??

t

δ(q̄t − k, r̄tu −m, r̄tρ(u) − n)−

−
?

t

?

p

δ(q̄t − k, r̄tu − p, r̄tρ(u) − n)?̂(j)ku,mn

?
.

(3.17)

The first sum in brackets counts how many times the most likely state in the node is

m given that the most likely state in its parent node is n and the state in the HMM is

most likely to be k. For the double sum, note that ?̂
(i)k
u,mn is a common factor and the sum

actually counts all the frames when the most likely state in the parent of the given node

is n and the most likely state in the external HMM is that related to the corresponding

HMT, k in this case. Restoration of the original parameters is straightforward from the

definition of ?̃
(j)k
u,mn.



48 Discriminative training of HMM in the wavelet domain

Finally, following identical procedures we find the updating formulas for the trans-

formed state transition probabilities ã
(j)
sj given by:

ã
(i)
sj ←−ã

(i)
sj − ατζ

?
T?

t=1

δ(q̄t−1 − s, q̄t − j)−
T?

t=1

δ(q̄t−1 − s)â
(i)
sj

?
. (3.18)

Once again, we can interprete the sumations in the above formula as counters acting on

the sequence of most likely states in the external HMM, as given by Viterbi decoding.

Original parameters a
(j)
sj (τ + 1) are easily restored using the definition of ã

(j)
sj .

3.4 Experimental results

In order to assess the proposed training method, we carry out automatic speech recog-

nition tests using phonemes from the TIMIT database [97]. This is a well known corpus

in the field and it has already been used in previous works dealing with similar schemes

[70, 72]. In particular, we use samples of phonemes /b/, /d/, /eh/, /ih/ and /jh/. The

voiced stops /b/ and /d/ have a very similar articulation and different phonetic variants

according to the context. Vowels /eh/ and /ih/ were selected because their formants

are very close [79]. Thus, these pairs of phonemes are very confusable. The affricate

phoneme /jh/ was added as representative of the voiceless group to complete the set. It

must be remarked that this signals are not spoken isolatedly but extracted from contin-

uous speech. Because of that, there is a large variability in both acoustic features and

duration in the dataset. All of these contribute to a very demanding task for a classifier.

As a measure of performance, we compare recognition rates achieved with the proposed

method against those for the same models trained only using the EM algorithm. In all the

experiments we model each phoneme with a left-to-right hidden Markov model with three

states (NQ = 3). The observation density for each state is given by an HMT with two

states per node. This is the standard setting for the state space in most HMT applications

[24]. The sequence analysis is performed on a short-term basis using Hamming windows

256-samples long, with 50% overlap between consecutive frames. On each frame, a full

dyadic discrete wavelet decomposition is carried out using Daubechies wavelets with four

vanishing moments [66, 72].

In a first set of experiments, we show numerically that the recognition rate achieved

with the EM algorithm attains an upper bound for the given models and dataset. This



3.4. Experimental results 49

bound is shown not to be surpassed neither increasing the number of reestimations of

the algorithm nor enlarging the training set. We next carry out a two-phoneme recog-

nition task using the approach developed in Section 3.3. The re-estimation formulas are

reduced to much simpler expressions in this case, allowing to get further insight into the

discriminative training process. It also serves us to compare the misclassification func-

tions proposed in Section 3.3.2. Finally, we carry out a multiclass speech recognition

experiment to assess the error rate reduction after adding a discriminative stage to the

training process.

3.4.1 Limits on performance for ML estimators

Discriminative training methods usually use ML estimates computed via the EM al-

gorithm as initial values for model parameters [13, 51]. Thus, it is fair to ask if better

performance could be achieved just using more training sequences in the pure ML ap-

proach or increasing the number of re-estimations in the EM algorithm, without adding a

discriminative stage. To answer this question empirically for our data and our particular

model, we first perform a two-phoneme recognition task using models trained with the EM

algorithm proposed in [70, 72]. We ran the experiment using training sets of increasing

sizes, from 25 sequences to 200. Each training set was picked at random from the whole

training partition of the dataset. A separate testing set with 200 sequences was used for

all trials. Each tested condition was run ten times and the number of re-estimations used

for the EM algorithm was fixed at 6 in all of them. Obtained results for the {/b/,/d/}
pair are given in Figure 3.4.a). It is clear from the figure that increasing the number of

training samples does not lead to a significant improvement in the recognition rate when

only the EM algorithm is used for training. In fact, analysis of results shows that the

p-value for the {/b/,/d/} pair is 0.4476, which is far from the critical value to reject the

null hypothesis of all means being statistically the same. Similar comments apply for the

{/eh/,/ih/} pair.

On the other hand, the effect of fixing the size of the training set and increasing the

number of re-estimations used in the EM algorithm is shown in Figure 3.4.b). Given

values correspond to training sets with 200 sequences. It can be seen that recognition

rates remain fairly the same with the increase in the number of re-estimations. For the

{/b/,/d/} pair and the specific set of sequences used in the experiment, there is a slowly

improvement in performance up to ten re-estimations. Beyond that there is no benefit in

adding re-estimations steps in the EM algorithm. For the {/eh/,/ih/} pair of phonemes
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Figure 3.4. Recognition rates for EM training. a) Increasing the size

of the training set. Shown results are the median over ten runs for each

tested condition. Error-bars are given by the first and third quartiles of the

obtained scores. b) Increasing the number of reestimations. The {/b/,/d/}
pair was used in both experiments.

there is a little improvement up to five re-estimations but no further improvement is seen

either adding more re-estimations.

Observed results in this experiment reproduce a typical scenario when working with

“real” data. Always the proposed model it is obviously not the true model for the data in

that case. Increasing the training set or adding re-estimations to the EM algorithm can

only contribute to find better estimates for the parameters in those models. If models

were the true ones, this would help for classification. But as models do not give the exact

distribution of the data, we cannot expect this to translate into better discrimination.

Note that this is not a statement on the goodness of fit of the model itself. For complex

real data (like speech, in this case), hardly any model we propose would fail to model it

accurately. Here is when discriminative training becomes important.

3.4.2 MCE training for two-class phoneme recognition

In order to get some insight into the learning process, we first consider a classification

task comprising only two phonemes. In this case, for a training sequence W ∈ Ω1, the

misclassification function SMF reduces to

d̄1(W; Θ) = g1(W; Θ)− g2(W; Θ) .
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Aside from the change in sign to account for the different definition of the discriminant

functions we made in (3.5), this is the same as the frequently used function (3.7) for

a binary classification problem [1]. When the classifier decision is right, g1(W; Θ) <

g2(W; Θ) and the misclassification function takes a negative value. As this decision is

stronger, d̄1(W; Θ) becomes more negative and the resulting loss (3.2) goes to zero. We

then see from the updating formulas in Section 3.3.3 that no updating is performed in such

a case. So, the algorithm preserves model parameters that do well when classifying the

current training signal. Furthermore, for strongly confused patterns d̄1(W; Θ) becomes

a large positive value and no update is introduced either.

On the other hand, the missclassification function nSMF reduces to

d1(W; Θ) = 1− g2(W; Θ)

g1(W; Θ)
.

When the classifier decision is right, it behaves closely to d̄1(W; Θ). Nevertheless, if the

current training sequence is strongly misclassified, d1(W; Θ) will tend to 1. Unlike the

previous case, parameters will be updated unless γ is too large. Therefore, this definition

of the misclassification function adds a corrective feature to the learning process. In both

cases, parameter update takes place when models are confusable and it is the strongest

when the current training sequence is equally likely for both of them. With the second

definition, however, we can also expect an updating step even for strongly misclassified

patterns.

We can get an idea of the strength of the updating steps looking at the distribution

of ?i(1 − ?i). For a given pattern, this factor scales the gradients in the re-estimation

formulas according to how confusable the pattern is for the classifier, as told by the

misclassification function. Figure 3.5 compares the distribution of this factor at the

beginning of the iterative process, obtained for the same training set but choosing a

different training method in each case. Figure 3.5.a) corresponds to standard MCE

training for HMMs with Gaussian mixtures as observation densities on a cepstral-based

feature space. Figure 3.5.b) comes from a classifier based on HMM-HMTs, using the

misclassification function SMF to derive the MCE criterion; and Figure 3.5.c) comes from

a classifier based on HMM-HMTs, but using nSMF as the misclassification function. In

these later histograms, the bin that includes the value ?i(1− ?i) = 0 was removed to keep

figures at a similar scale. It is interesting to see that despite of (3.7) and SMF sharing

the same misclassification function for a binary problem like this, it is the criterion based

on the misclassification function nSMF which generates the distribution of factors more

similar to the standard case shown in plot d) when using the HMM-HMT. Therefore,

changing the feature space used to represent the data can induce important modifications

in the way the updating process is driven by a given approximation of the loss.
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Figure 3.5. Distribution of the loss and the factor ?i(1 − ?i) at the be-

ginning of different settings of the MCE training. Upper figures show the

location of the loss for each sequence in the training set, while figures at

the bottom show the resulting histogram for the factor ?i(1− ?i). a) and d)

using cepstral features and Gaussian mixture-HMMs along with a standard

misclassification function as in (3.7); b) and d) using the HMM-HMT and

SMF; c) and e) using the HMM-HMT and nSMF.

To compare the performance achieved by SMF and nSMF, we carried out numerical

experiments with phonemes {/b/,/d/} and {/eh/,/ih/}, which are the most confused

pairs in the set. Two hundred sequences from each class were used for training and another

set of two hundred sequences from each class were used for testing. Five re-estimation

steps were used in the EM algorithm, along with Viterbi flat start [79]. Parameters for

the MCE learning stage were set following informal tests on a validation test, aimed to

find the values that give better performance for each pair of phonemes and for each choice

of misclassification function. When using SMF we set α0 = 2.5 and γ = 0.01, while we

set α0 = 0.5 and γ = 1 for the algorithm derived using nSMF. In all cases, the learning

rate was decreased at a constant rate from ατ = α0 at the beginning of the discriminative

training to ατ = 0 at its end. The number of iterations of the MCE algorithm through

the whole training set was varied as 5, 15, 25 and 35. Ten runs were performed for each

tested condition, varying the training set in each one but keeping fixed the set for testing.

Obtained results for each pair of phonemes and each choice of the misclassification

function are shown in Figure 3.6 and Figure 3.7. Figure 3.6 shows the achieved recognition
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Figure 3.6. Recognition rates for phonemes /b/ and /d/: a) using SMF;

b) using nSMF. Shown results are the median over ten runs for each tested

condition. Error-bars are given by the first and third quartiles of the ob-

tained scores.

rates for the pair {/b/,/d/}. Performance for zero iterations of the MCE algorithm refers

to the case when the classifier is trained using ML estimation and serves as the baseline

for comparison. It can be seen that the scores using discriminative steps are significantly

higher than the baseline with both MCE criteria for all tested conditions with more

than five iterations. For five MCE iterations there is no significant improvement on the

average. Figure also shows that the training method using the misclassification function

nSMF outperforms that based on SMF. With 35 iterations of the algorithm, the former

achieves an average reduction of about 30% in the error rate, whereas the later does a 14%.

In addition, there seems to be a trend to continue rising the recognition rate in Figure

3.6.b), while in 3.6.a) improvements appear to have reached a bound. Furthermore, the

variance of the obtained scores remain very similar as they go better for the method using

the misclassification function nSMF, while it increases significantly for the method using

SMF.

The difference in performance achieved with a different choice of the misclassification

function is stressed in the results for phonemes {/eh/,/ih/} shown in Figure 3.7. Scores

obtained here with the method based on nSMF are markedly better than those achieved

using SMF. For the former the average improvement in the error rate is around 45%,

whereas for the latter it is about 20%. A possible explanation of these results relies on

the wide dispersion of discriminant function values. As SMF is based just on a difference

between these values, it also has a large variability that makes it very difficult to choose

a suitable sigmoid to capture many confusable samples to drive the competitive update

without picking too much of them. The selected value for γ becomes conservative and then

only a small subset of confusable samples are used to trigger the updates, which results
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Figure 3.7. Recognition rates for phonemes /eh/ and /ih/: a) using SMF;

b) using nSMF. Shown results are the median over ten runs for each tested

condition. Error-bars are given by the first and third quartiles of the ob-

tained scores.

in a poorer performance. It must be noticed that this effect is expected to be emphasized

as the duration of sequences increases, so that is natural to have better results for the

shorter samples from {/b/,/d/}. On the other hand, the misclassification function nSMF

introduces a scaling that avoids it to have so much variation in its values, which makes

it easier to find a suitable sigmoid to drive the selection of confusable patterns.

3.4.3 Sensitivity to parameters of the algorithm

It is interesting to see the effect on the recognition rate when changing the parameters

of the MCE/GPD algorithm. Consider the problem of classifying phonemes {/eh/,/ih/}.
We first carried out a simple experiment setting η = 4 and γ = 1 as in previous tests, and

changed α0 to take values {0.25, 0.50, 1.0, 2.0}. Obtained results are shown in Figure

3.8.a). It can be seen that for this dataset recognition rates attain a bound at 67.5% for

all conditions, but they differ in the speed they do it with. The smaller learning rate

shows the lowest increase in recognition rate when increasing the number of iterations

of the learning algorithm. Increasing α0 speeds up the process, but it can be seen also

that it can lead to overfitting. This situation is common to all gradient-based techniques

as the one proposed here. The optimal value of α0 depends on the data and the size of

the training sample. Some rough guidelines to choose this parameter are stated in [68],

taking into account the variability of the sample.
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Figure 3.8. Sensitivity of recognition rate to changes on the parameters

of the MCE/GPD algorithm. a) Varying α0, with γ fixed. b) Varying γ,

with α0 fixed.
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Figure 3.9. Location of the training sequences on the loss function for

different values of parameter γ, using nSMF: a) γ = 0.5, b) γ = 1; and c)

γ = 2.

A similar effect can be seen in Figure 3.8.b), but varying γ and letting α0 and η fixed.

Nevertheless, the reason is quite different. Parameter γ determines the rate of change of

the loss aproximation. For small values of γ, the signoid grows slowly from ? = 0 to ? = 1

and much of the training samples result in values of the misclassification function that fall

in the raising segment of the sigmoid. In this case, even well classified sequences trigger

strong updates. As γ becomes large, the raising segment of the sigmoid gets sharper and

less cases fall in this region. Thus, well classified observations introduce a much weaker

change on the parameters. At the same time, when nSMF is used as the misclassification

function, small values of γ make misclassified cases fall in a narrow segment of the sigmoid,

as seen in Figure 3.9. They give rise to updates with similar strength regardless the

confusability of the training sequence. As γ becomes larger, misclassified cases occupy a

broader region of the sigmoid, triggering updates that depend more on confusability.
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Figure 3.10. Error rate improvement over standard ML training us-

ing the proposed MCE approach to train the classifier for the set of five

phonemes. The misclassification function nSMF was used in this experi-

ment. Initial recognition rates using ML estimates are around 37% for the

considered phoneme set.

3.4.4 Multiclass phoneme recognition

To further assess the proposed discriminative training method for the HMM-HMT

model, a new speech recognition task including the whole set of phonemes was carried

out. In this experiment, only the MCE approach based on the misclassification function

nSMF was taken into account, as consistently better results were found for this choice

in the previous task. Ten training sets picked at random were considered and a replicate

of the experiment was run for each of them. The testing set remained fixed for all runs.

Both the training sets and the testing set were build randomly taking 200 sequences from

each class. The same learning rate was used for all the parameters in the models. The

initial rate α0 was chosen to be the largest value that gave a monotonic improvement in

recognition rate as a function of the number of iterations of the MCE algorithm, when

using a separate set of sequences both for training and testing. This was checked in

preliminary runs. During the experiments, this learning rate was linearly decreased from

ατ = α0 at the first iteration to ατ = 0 at the end of the training process.

Obtained results are shown in Figure 3.10. A monotonic improvement in the error rate

is achieved as more iterations over the whole training set are added to the discriminative

training process. After 35 iterations, the average error rate reduction is about 18%. Most

of the improvement, however, occurs up to 25 iterations of the MCE algorithm, reducing
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the error rate around a 17.25% at this level. The variance in the obtained rates remains

fairly the same with the increased number of iterations. Analysis of individual runs reveals

that for some training sets performance degrades with the first iterations of the algorithm

and then starts to improve as more iterations are carried out. Furthermore, three of the

ten runs show that the achieved score starts to decrease slowly at 35 iterations, suggesting

that overfitting could be taking place after this point.

This difficult classification task show a consistent improvement in recognition rate

using the proposed method to discriminatively train the HMM-HMT model.

3.5 Concluding remarks

In this chapter, a new discriminative training method was introduced for hidden

Markov models in the wavelet domain. The algorithm is based on the MCE/GPD ap-

proach and it allows for training fully non-tied HMM-HMT models. This observation

model and feature space required special considerations. It was shown that standard pro-

cedures were numerically unfeasible in this scenario, and alternative choices were needed

to simulate the classifier decision when the MCE criterion was derived. Assessment of

proposed misclassification functions in a simple phoneme recognition task showed that

comparing the order of magnitude of the log-likelihoods for competing models was more

appealing to this context than simple comparison of their value. This important modifi-

cation results in a stronger penalty for misclassified patterns, giving rise to a corrective

characteristic that works well in this context. Speech recognition experiments show that

the proposed method achieves consistent improvements on recognition rates over training

with the standard EM algorithm only.





CHAPTER 4

Discriminative dimension reduction: a

sufficiency approach

4.1 Introduction

When parametric models for X|Y are estimated using maximum likelihood, likelihood-

based supervised dimension reduction can be consistently embedded into this learning

framework. For GHMM-based classifiers, the examples most widely used in applications

are the subspace projection methods proposed in [56, 55, 81]. They are built upon

reduction methods for Gaussian data and pursue likelihood approaches to linear discrim-

inant analysis (LDA) and heteroscedastic linear discriminant analysis (HLDA). But do

they retain all the discriminative information that is contained in the original data? If

they do, are the obtained subspaces the smallest that show that conservation property?

In this chapter we address these questions under the framework of sufficient dimension

reduction (SDR), which explicitly accounts for loss of information in the context of a

particular task [59, 18]. We show that both LDA and HLDA actually can obtain an

optimal subspace projection in the sense of sufficiency for classification, but under some

strong constraints on the covariance structure of the class models. In addition, we show

that when seen from the sufficiency point of view, HLDA obtains a subspace that may not

be minimal. As a remedy, we propose a new linear transformation that satisfies the same

covariance constraints HLDA does, but spans the smallest linear subspace that retains

all the information about Y . When heteroscedastic data is not constrained to a special

59
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covariance structure, we show that there is another estimator derived under sufficiency

that provides a more proper way to deal with this type of data and thus it is able to

outperform HLDA. The theory and algorithms are developed under the assumption that

the dimension d of the retained subspace is known. Nevertheless, theory allows to provide

methods for inference on d. We review some of these methods, which also help to ground

the selection of d on a principled basis and can serve as alternatives to computationally

demanding cross-validation tests.

The chapter is organized as follows. We start by briefly reviewing LDA and HLDA

in Section 4.2. In Section 4.3 we review the basics of sufficient dimension reduction,

and restate the main results derived for normal models. We then analyze LDA and

HLDA from the point of view of sufficiency in Section 4.4. In Section 4.5 we focus

on inference methods for the dimension of the retained subspace. We review likelihood

ratio tests, information criteria, and permutation tests, which can serve as alternatives

to cross-validation estimation of classification errors. Simulations illustrate our points in

Section 4.6. Finally, in Section 4.7 we show how these SDR methods originally derived

for conditional normal models can be extended to GHMM.

4.2 Existing methods for linear dimension reduction

In this section we briefly review the basics of LDA and HLDA. For convenience, we

summarize some notation now. For A ∈ Rp×p and a subspace S ⊆ Rp, AS ≡ {Ax :

x ∈ S}. PS indicates the projection onto the subspace S in the usual inner product, and

QS = I − PS is the projection onto its orthogonal complement. In addition, let Vd(A)

stand for the matrix whose columns are the first d-eigenvectors of the symmetric positive

definite matrix A.

Also, assume in the following that we have Ny i.i.d. observations {(Yi = y,Xi)} for each
class y = 1, 2, . . . , h, with N =

?
y Ny, let µy = E(X|Y = y), ∆y = var(X|Y = y), µ =

E(µY ), ∆ = E(∆Y ) and consider statistics µ̃y = N−1
y

?Ny

i=1 Xi, ∆̃y = N−1
y

?Ny

i=1(Xi −
µ̃y)(Xi − µ̃y)

T , µ̃ = N−1
?

y Nyµ̃y, and ∆̃ = N−1
?

y Ny∆̃y. Finally, for a parameter γ,

let γ̂ refer to its ML estimator.
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4.2.1 Linear discriminant analysis

The best known of supervised dimension reduction methods is Fisher’s LDA [39]. It

aims to separate classes as far as possible by maximizing the ratio of between-class scatter

to average within-class scatter in the transformed space. The transformation matrix ρLDA

is then determined by maximizing the criterion

JF (ρ) = tr{(ρT ∆̃ρ)−1(ρTBρ)}, (4.1)

where B = N−1
?h

y=1 Ny(µ̃y − µ̃)(µ̃y − µ̃)T is the so-called between-class covariance

matrix. Optimization of JF boils down to finding the eigenvalue decomposition of

∆̃
−1/2

B∆̃
−1/2

. Doing this we get

ρLDA = ∆̃
−1/2

Vd(∆̃
−1/2

B∆̃
−1/2

). (4.2)

As the rank of B is h− 1, we can find at most min(h− 1, p) discriminant directions.

While it is not necessary to make restrictive assumptions on X|Y to derive ρLDA in

this way, it is well-known that this projection method achieves the best results when

X|Y is normally distributed and all within-class covariance matrices are the same. This

observation motivated efforts to understand ρLDA as a ML estimator. Such interpretation

when X|(Y = y) ∼ N (µy,∆) is given in [10].

4.2.2 Heteroscedastic linear discriminant analysis

Several extensions to LDA have been proposed to deal with the nonconstant variance

case [56, 81, 26, 76, 63, 62]. We are concerned here only with those based on maximum

likelihood estimation, so that they can be consistently embedded into HMM training.

Probably the best known of these methods is that introduced in [56], which we will simply

refer to as HLDA. Their derivation is as follows. Assume X|(Y = y) ∼ N (µy,∆y) and

consider a full-rank linear transformation of X with a matrix Θ = (ρHLDA,ρ0) so that

ΘTX ∼ N (µ∗
y,∆

∗
y), with

µ∗
y =

?
ρTµy

ρT
0µ

?
∆∗

y =

?
Ωy 0

0 Ω0

?
.
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In this way, ρT
HLDAX is independent of ρT

0 X and the latter is constant for all classes

y. Thus, ρT
0 X does not carry any discriminative information and can be ignored for

classification. Without loss of generality, assume Θ is an orthogonal matrix and that

ρHLDA is semi-orthogonal. From [56] the optimum matrix Θ maximizes the log-likelihood

function

LHLDA(Θ) = −N

2
log |ρT

0 Σ̃ρ0| −
1

2

h?

y=1

ny log |ρT
HLDA∆̃yρHLDA|. (4.3)

The optimum does not have a closed-form solution, so numerical techniques must be

employed [56, 41]. Notice that in this derivation, beginning with normality for X|Y ,
restrictions are imposed in the transformed feature space, not in the original space of

X. Also, the models assumed in the transformed space are strongly structured to allow

statistical independence between ρT
HLDAX and ρT

0 X.

It is also interesting to analyze the case in which Ωy = Ω; that is, when it is the same

for all classes. Now it is obvious that ∆y = ∆ for all y; then no part of the covariance

matrices has any discriminative information. The log-likelihood function (4.3) reduces to

L(Θ) = −N

2
log |ρT

0 Σ̃ρ0| −
N

2
log |ρT ∆̃ρ|. (4.4)

It is stated in [94, 56] that maximization of this function gives rise to ρLDA, allowing

us to interpret it as a special case of ρHLDA when all covariance matrices are the same.

We think this statement is wrong. For all y, ∆∗
y = ∆∗ will still have a block-diagonal

structure

∆∗ =

?
Ω 0

0 Ω0

?
.

Thus, even in this case ∆∗ induces a particular structure for the covariance matrix ∆,

not just being the same for all classes. That is, when ∆y = ∆ for all classes but ∆ is an

arbitrary covariance matrix without this structure, we cannot assure ρLDA = ρHLDA.

In fact, it can be shown that (4.4) is induced by special assumptions on the normal

class models. The corresponding model is known as extended principal fitted components

in the Statistics literature [18]. Furthermore, it is stated there that there is not an

analytical solution to (4.4) and numerical optimization has to be used [18]. It can be

verified numerically that substituting ρ in (4.4) by an estimator different to ρLDA, as

obtained for instance with PCA, can give a value for the likelihood (4.4) that is bigger

than when using ρLDA.
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4.3 Sufficient dimension reduction

Sufficient dimension reduction is a methodology that deals explicitly with information

retention. In this section we review the basics of the sufficiency framework and restate

the main results derived for normal models.

4.3.1 Basics

For a response variable Y ∈ R and a set of features or predictors X ∈ Rp, the following

definition formalizes the notion of a sufficient dimension reduction [18]:

Definition: A reduction R : Rp → Rd, with d ≤ p is sufficient if it satisfies one of the

following conditions:

(i) Y |X ∼ Y |R(X)

(ii) X|(Y,R(X)) ∼ X|R(X)

(iii) X ⊥ Y |R(X)

Notice that each of these conditions conveys the idea that R(X) carries all the in-

formation about Y that is contained in X. One may be more useful than the others

depending on the stochastic nature of Y and X, but they are equivalent when (Y,X) has

a joint distribution, as is usually assumed with Bayes classifiers.

In this work we deal only with linear reductions of the form R(X) = ρTX. Note that

the full feature vector X is always a sufficient reduction. Thus, the essential tasks in

SDR are to characterize and estimate the smallest sufficient reduction. In addition, if

ρTX is a sufficient reduction and η ∈ Rd×d is a nonsingular matrix, then ηρTX is also a

sufficient reduction. Thus, ρ is not unique and what really makes sense to identify is the

subspace spanned by the columns of ρ. This subspace Sρ = span(ρ) is called a sufficient

dimension reduction subspace. Under mild but non-negligible conditions, the intersection

of all sufficient dimension reduction subspaces is also a sufficient dimension reduction

subspace and thus it is the smallest one. It is called the central subspace [16, 17] and it

is the inferential target in SDR. From now on, unless stated otherwise, ρ will be a basis

matrix for the central subspace.
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Here we are interested in the case where X|Y is normally distributed with parameters

µy and ∆y. Under this model, the central subspace exists and we can employ a likelihood

function to estimate it from the data. Then, maximum likelihood estimation guarantees√
N consistency and also asymptotical efficiency when the likelihood accurately describes

the data.

It might be argued, however, that the definition stated above for sufficient dimension

reduction is not focussed explicitly in classification. In a classification framework, we are

interested actually in finding a classification rule to assign a label Y = y to each feature

vector X. Were f(X) : Rp → {1, 2, . . . , h} the decision rule, we can think of a reduction

as sufficient if given X = x, f(ρTx) = f(x) for each x in the feature space. The subspace

spanned by the columns of ρ would be then a central discriminant subspace1 [23, 92].

This subspace may be a subset of the central subspace, as we may need less information to

discriminate between classes than to describe them accurately. Nevertheless, when using

the common Bayes classification rule, it was shown in [23] that this discriminant subspace

is identical to the central subspace when class models are Gaussian distributions. Thus,

for normally distributed data we can exploit theory recently developed for regression

tasks to get further insight into dimension reduction aimed to classification tasks.

4.3.2 Sufficient reductions for normal models

The theory of sufficient dimension reduction for normally distributed data with con-

stant covariance matrix was presented in [18] and further developed in [21]. The exten-

sion to general cases with unconstrained covariance was introduced in [20]. The following

theorem, demonstrated in [20], gives necessary and sufficient conditions for a subspace S
to be a dimension reduction subspace.

Theorem 1: Assume that X|(Y = y) ∼ N (µy,∆y), y = 1, 2, . . . , h. Then Sρ =

span(ρ) ∈ Rp is a sufficient dimension reduction subspace if and only if:

a) span(µy − µ) = ∆ span(ρ).

b) QSρ∆
−1
Y does not depend on the class Y.

This theorem implies that the subspace spanned by ∆ρ must be an invariant subspace

for the deviations ∆y − ∆, and that the translated means µy − µ must fall also in that

1In [92] this subspace is referred to as intrinsic Bayes discriminant subspace. We prefer the termi-

nology used here to keep it closer to the central subspace widely known in regressions.
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subspace2 [20]. Under these conditions, the means and covariance matrices of the class

models are

µy = µ + ∆ρνy, (4.5)

∆y = ∆ + ∆ρTyρ
T∆,

for some νy ∈ Rd and ν̄ =
?

y νy = 0, Ty ∈ Rd×d and
?

y Ty = 0, and d = dim(Sρ). It

is important to emphasize that (4.5) are necessary and sufficient conditions derived from

Theorem 1 to assure the existence of a linear SDR when X|Y ∼ N (µy,∆y); they are not

assumptions set a priori to derive the subspace projection method.

Despite this theorem being a main result, in practice we are interested in an estimator

for Sρ. Going in that direction, let ρ be a semiorthogonal basis matrix for Sρ ⊆ Rp and

let (ρ,ρ0) ∈ Rp×p be an orthogonal matrix. It is shown in [20] that Sρ is a sufficient

dimension reduction subspace if and only if the following two conditions are satisfied for

some vectors νy

1. ρTX|(Y = y) ∼ N (ρT (µ + ∆ρνy),ρ
T∆yρ)

2. ρT
0 X|(ρTX, Y = y) ∼ N (ρT

0µ + HρT (X − µ),D), with

D = (ρT
0 ∆−1ρ0)

−1 and H = (ρT
0 ∆ρ)(ρT∆ρ)−1.

It is clear now that if Sρ is a dimension reduction subspace, the distribution of ρTX|(Y =

y) can depend on Y , but the distribution of ρT
0 X|(ρTX, Y = y) cannot. Thus, ρTX

carries all the information that X contains about Y and ρT
0 X|ρTX does not retain any

information about the class and it is irrelevant for classification.

4.3.3 The optimal estimator under sufficiency

With the ingredients stated in the last subsection, we are ready to obtain the MLE

of ρ. Assume that ρ ∈ Rp×d is a semiorthogonal basis matrix for the smallest dimension

reduction subspace. For normally distributed data with means and covariance matrices

as in (4.5), the MLE ρLAD maximizes the log likelihood function [20]

LLAD(ρ) = const +
N

2
log |ρT Σ̃ρ| − 1

2

?

y

Ny log |ρT ∆̃yρ|. (4.6)

2S ∈ Rp is an invariant subspace of A ∈ Rp×p if AS ⊆ S.
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This estimator is simply known as likelihood acquired directions (LAD). There is not an

analytic solution to this maximization problem, so we must employ numerical optimiza-

tion to find ρ that maximizes LLAD(ρ). In addition, to guarantee achieving the MLE,

all the columns of ρ should be estimated jointly. We recall that the stated result re-

stricts itself to semiorthogonal matrices ρ. It is easy to see that for any nonsingular

matrix O ∈ Rd×d, LLAD(ρ) = LLAD(ρO). Thus, the natural parameter space for ρ is the

Grassmann manifold of dimension d in Rp [12].

The LAD estimator is equivariant under full-rank transformation of the features X.

That is, if we rescale the observed X as ηTX prior to estimation, the obtained estimator

will be a semi-orthogonal basis matrix for span(ηρ) provided η is a nonsingular matrix.

This invariance property does not hold for HLDA, as shown later in Section 4.4.2. In

addition, LAD is found to perform well even when the data deviate from normality

[20]. In particular, it can be shown that if E(X|ρTX) is linear and var(X|ρTX) is a

nonrandom matrix, then the subspace spanned by ρ̃ as found by maximizing (4.6) is a

consistent estimate of the minimal reduction subspace [20].

4.4 Understanding existing methods under SDR

In this section we wonder if the frequently used methods LDA and HLDA for likelihood-

based subspace projection of Gaussian data can be understood under the sufficiency

approach, that is, if they do not loose any class-information that was present in the

original features. Under what assumptions on the class models do these methods provide

sufficient dimension reduction in the sense discussed here? We work on this question in

the following paragraphs.

4.4.1 LDA from the sufficiency approach

When ∆y = ∆ for all y, condition b) in Theorem 1 becomes trivial, and ρTX is a

minimal sufficient reduction if and only if span(µy − µ) = ∆ span(ρ), with class models

being normal distributions with mean µy = µ + ∆ρνy and covariance matrix ∆ for all

y [18, 21].
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A basis matrix for this minimal dimension reduction subspace can be found by mod-

eling νy [21]. Assume for a moment that Y is a general response variable in R and let

Y ∈ Rr be a vector valued function of Y . Let X ∈ RN×p stand for the whole sample of

feature vectors, where each row is an observation, and let X c be its centered counterpart.

Taking νy = βY, with β ∈ Rd×(h−1), the centered fitted values X̃ of the linear multi-

variate regression of X c|Y on Y have covariance matrix Σ̃fit = X̃ T X̃ /N . Define Σ̃res

so that Σ̃ = Σ̃fit + Σ̃res. It is shown in [21] that ρ = Σ̃
−1/2

res Vd(Σ̃
−1/2

res Σ̃fitΣ̃
−1/2

res ), with

d ≤ min(h − 1, p), spans the smallest dimension reduction subspace when X|(Y = y) is

normally distributed with mean µy = µ+∆ρβY and covariance matrix ∆y = ∆ for all

classes y. This reduction is called principal fitted components (PFC).

While this development seems more tailored to dimension reduction in regression, we

want to emphasize here that it is equally suitable to discrimination tasks. Indeed, when

Y represents class labels, the estimator ρPFC found in this way resembles ρLDA. To see

this, let Y ∈ Rh−1 be an indicator multivariate response whose columns designate the

class from where the the features vector X comes. In particular, if X = x comes from

class y = k, the i-th coordinate of Y takes the value 1 − Nk/N if i = k and −Ni/N

otherwise. Note that E{Y} = 0 with this choice.

With this setting, assume as before that X|(Y = y) ∼ N (µy,∆) with µy = µ+∆ρβY

so that a sufficient reduction exists. The sample covariance matrix of the fitted values

Σ̃fit = X̃ T X̃ /n is the sample between-class scatter matrix B defined above. As the

marginal sample covariance matrix is Σ̃ = B + ∆ = Σ̃fit + Σ̃res, Σ̃res takes the place of

?∆. Then ?ρ = ?∆−1/2
Vd( ?∆

−1/2
B ?∆−1/2

), with d ≤ min(h− 1, p), is a basis matrix for the

smallest dimension reduction subspace. The relationship with ρLDA in (4.2) is clear.

Note this result provides both a maximum likelihood derivation of LDA and a suffi-

ciency interpretation for it. Although there exists other developments to cast the LDA

projection in a likelihood framework [10], the one presented here gives sufficient condi-

tions on the distribution of X|(Y = y) so that ρT
LDAX retains all the information about

Y that is contained in X. As a consequence, this interpretation allows us to choose a

dimension d ≤ min(h − 1, p) for the minimal dimension reduction subspace using tools

derived from theory.

4.4.2 HLDA from the sufficiency point of view

We saw in Section 2.2 that HLDA was derived in [56] assuming a particular model for

the transformed features ΘTX. To gain insight into this method under the sufficiency
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approach, we need the model induced by these assumptions back in the original space of

the features X.

Let Θ = (ρ,ρ0) be an orthogonal matrix with ρ ∈ Rp×d. It is easy to see that we get the

HLDA assumptions ρTX|Y = y ∼ N (ρTµy,Ωy) and ρT
0 X|(ρTX, Y = y) ∼ N (ρT

0µ,Ω0)

if and only if X|(Y = y) is normally distributed with mean and covariance matrix

µy = µ + ρνy ,

∆y = ρΩyρ
T + ρ0Ω0ρ

T
0 . (4.7)

In addition, it is clear that ∆ = ρΩρT + ρ0Ω0ρ
T
0 , where Ω =

?
y Ωy. This structure

implies that the subspace spanned by ρ reduces ∆, i.e. there exists a matrix C ∈ Rd×d

so that ∆ρ = ρC. Then, rewritting νy = Cγy and Ωy − Ω = CTyC
T , we get µy =

µ + ∆ργy and ∆y = ∆ + ∆ρTyρ
T∆. We see that ρ = ρHLDA satisfies (4.5) and as a

result it is a special case of LAD and then it is a basis matrix for a dimension reduction

subspace. Thus, HLDA estimates a sufficient reduction provided X|(Y = y) is normally

distributed with mean µy = µ + ρνy and covariance matrix ∆y = ρΩyρ
T + ρ0Ω0ρ

T
0 .

The derivation above emphasizes that HLDA as introduced in [56] can be regarded

as an extension of LDA for heteroscedastic data with constrained covariance matrix. As

a consequence, it does not seem suitable to consider HLDA as a general extension of

Fisher’s LDA for every type of heteroscedastic data. On the other hand, the LAD model

discussed in Section 4.3.3 provides that natural extension allowing for class models with

unconstrained covariance matrices. In addition, the strong independence assumed in the

transformed domain between ρT
HLDAX and ρT

0 X will no longer hold, in general, after

rescaling the features with an arbitrary nonsingular matrix η. Thus, unlike the LAD

estimator, the HLDA estimator is not equivariant under full rank transformation of the

features. This is an important point that becomes clear with the simulations in Section

4.6.

4.4.3 The minimality question

We saw in Section 4.4.2 that HLDA can give a sufficient linear reduction provided

the data has a particular covariance structure. Nevertheless, it is interesting to recall

that if a dimension reduction subspace is a subset of a bigger subspace, then the larger

subspace is also a dimension reduction subspace. Thus, there exist sufficient dimension

reductions that are nonminimal; that is, we could expect to reduce the retained subspace

even further. So we turn now to the question of minimality of reductions obtained using
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HLDA: are the retained directions the fewest linear combinations of the features that

retain all the information about the class or can we find a smaller linear subspace that

still conserves all of that information?

The answer seems rather evident at this point. From our previous discussions, it

is easy to see that in general we cannot expect the subspace spanned by ρHLDA to be

the smallest dimension reduction subspace, although it will be so when the required

covariance structure holds. We focus on giving an intuitive explanation here. The general

lack of minimality of the HLDA estimator is due to the particular covariance structure of

the assumed class models. The transformation needs to accomodate all the class-specific

information there is in ∆y into matrices Ωy, and achieve statistical independence between

ρT
HLDAX and ρT

0 X. This fact determines the dimension of span(ρHLDA), as ρHLDA must

capture this structure in the covariance. This is always possible with d = p, albeit the

reduction is no longer useful.

As the dimension of Ωy grows, it is more probable that the smallest dimension reduc-

tion subspace is a subset of span(ρHLDA). Assume that the dimension of span(ρHLDA) is

actually u, and that α ∈ Rp×d, d ≤ u ≤ p, is a semiorthogonal basis matrix for the small-

est sufficient dimension reduction subspace (we can infer about both u and d as we will

see in Section 4.5). If span(α) ⊆ span(ρHLDA), then there exist a semi-orthogonal matrix

A ∈ Ru×d so that α = ρHLDAA. Thus, HLDA provides a minimal sufficient dimension

reduction only when u = d. If this is not the case, HLDA will still be able to achieve a suf-

ficient dimension reduction ρT
HLDAX ∈ Ru, but it will not be minimal. On the other hand,

LAD always estimates the smallest linear reduction, so that span(ρLAD) ⊆ span(ρHLDA).

In practice, the effect of this is that HLDA often needs to retain more directions than

LAD to properly account for all the discriminative information.

4.4.4 A new estimator LAD2

Assuming the HLDA model (4.7) and recalling that ρ ∈ Rp×u is a sufficient reduction,

it follows that ∆ has a structure ∆ = ρΩρT+ρ0Ω0ρ
T
0 , where Ω = E(ΩY ). If the minimal

reduction, that is the central subspace, is span(α), then α = ρA for some semiorthogonal

A ∈ Ru×d, with d ≤ u. Using this statement and (4.5) we get

µy = µ + ∆ανy

= µ + ρΩAνy,

∆y = ∆ + ∆αTyα
T∆

= ρΩρT + ρ0Ω0ρ
T
0 + ρΩATyA

TΩρT . (4.8)
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From the previous discussion, the semi-orthogonal basis matrix α can be regarded as a

special case of ρLAD. Nevertheless, the LAD reduction does not recognize the special

structure of the covariance matrices. If model (4.8) actually holds for the data, we can

look for a more efficient reduction by taking the covariance constraints into account. To

do so and achieve a minimal sufficient reduction, we need to estimate ρ and A jointly by

maximizing the likelihood function

LLAD2(ρ,A) = const− N

2
log |ρT Σ̃

−1
ρ| − N

2
log |ρT Σ̃ρ|+ (4.9)

+
N

2
log |ATρT Σ̃ρA| − 1

2

?

y

Ny log |ATρT ∆̃yρA|,

with ρ in the Grassmann manifold of dimension u in Rp, and A in the Grassmann

manifold of dimension d in Ru. The proof is left to the Appendix B. We will refer to this

estimator as LAD2 and will denote it by ρLAD2.

A priori, when the data is normally distributed with this structure, estimating ρ and

A in this way should be more efficient than using LAD, since when u < p there are less

degrees of freedom in these computations than in LAD. It is interesting to recall that if

we knew ρ, A would reduce to the LAD estimator for the transformed features ρTX.

As ρ provides the same covariance structure as ρHLDA, we can approximate the solution

applying HLDA first to the the features X and then obtaining the LAD estimator ALAD

for the transformed data ρTX|Y . In this way, ρHLDAALAD can serve as an estimator of

ρLAD2, though not being the MLE. In addition, note that when u = d, A is an orthogonal

matrix and maximizing (4.9) over ρ gives ρHLDA again.

4.4.5 Connections to other methods for heteroscedastic data

While we have focused our attention on HLDA due to its historical importance in

applications, in particular for speech technologies, there are other related methods that

deserve consideration. In [81], a projection for heteroscedastic data is proposed by gen-

eralizing Fisher’s criterion as

JHDA =
h?

y=1

?
|ρBρT |
|ρ∆̃yρT |

?Ny

. (4.10)

Taking the log and rearranging terms, maximizing JHDA amounts to maximizing ([81]

eq. 3)

H(ρ) = −
h?

y=1

Ny log |ρ∆̃yρ
T |+N log |ρBρT |. (4.11)
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As H(ρ) differs from (4.6) just on a term that does not depend on the transformation,

it is clear that optimization of this objective function gives the same estimator as LAD.

Nevertheless, one is derived through an heuristic while the other is driven explicitly by

information retention as a goal.

The dimension reduction method proposed in [95] is also related to LAD under some

special conditions. It aims at extending Fisher’s LDA to nonparameteric densities by

sequentially maximizing a generalized log-likelihood ratio statistic in a fixed direction α.

For normal class models, this criterion reduces to [96]

LR(α) =
h?

y=1

Ny

N
(logαTΣα− logαT∆yα). (4.12)

After the first unit vector is obtained, say α1, the method proceeds by maximizing the

same objective function with the added constraint αT
2α1 = 0, and so on. It is easy to see

that α1 is identical to ρLAD when the dimension of the central subspace is assumed to

be d = 1. Nevertheless, adding a second dimension α2 in this way, the subspace spanned

by the matrix (α1,α2) is not equivalent to span(ρLAD) for d = 2, with both columns

of ρLAD estimated jointly. An example with real data is used in [19] to illustrate that

while span(ρLAD) can capture all the structure and separate well the classes with just

two directions, (α1,α2) cannot perform comparably and lead to overlapped clusters of

projected features. The central point we want to stress is that the performance of a given

dimension reduction method depends on both the objective function being optimized

and the procedure used to carry it out. In particular, sequential optimization may lead

to different estimates than joint optimization of the likelihood. The MLE of (4.6) is

guaranteed using joint maximization but not proceeding sequentially. The same is true

for the methods for infering about the dimension d of the central subspace we review in

the following section.

4.5 Choosing the dimension of the reduction

In previous sections we assumed that we knew the dimension d of the smallest linear

subspace that retained all the class information. In practice, we do not know this quan-

tity and we have to infer it from the data. Most dimension reduction methods rely on an

exhaustive approach to infer the dimension of the retained subspace. In them, a sequence

of reductions of increasing size are tested based on some measure of performance; the one
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Model Degrees of freedom

HLDA p + (h− 1)d0 + (h− 1)d0(d0 + 1)/2 + p(p + 1)/2

LAD p + (h− 1)d0 + (h− 1)d0(d0 + 1)/2 + p(p + 1)/2 + d0(p− d0)

LAD2 p + (h− 1)d0 + (h− 1)d0(d0 + 1)/2 + p(p + 1)/2 + d0(u0 − d0)

Table 4.1. Degrees of freedom for computation of semi-orthogonal basis

matrix ρ ∈ Rp×d0 for HLDA, LAD, and LAD2 methods.

that achieves the best score is picked as the dimension of the reduction process. Cross-

validation estimation of prediction error rates is probably the best known alternative for

classification [49]. We can also rely on some of these methods for choosing d. Never-

theless, the likelihood-based approach of the methods discussed in this work allows us to

use other principled methods for choosing d. Some of them can be a much less expensive

alternative to cross validation. In the following paragraphs we review dimension selection

methods based on likelihood-ratio statistics, simple information criteria, and permutation

tests.

4.5.1 Likelihood ratio tests

The hypothesis d = d0 in HLDA and LAD can be tested using the likelihood ratio

statistic Λ(d0) = 2(L̂p−L̂d0). Here, L̂p is the value of the log likelihood for the considered

model when using the whole set of features and L̂d0 is the log likelihood at the MLE

retaining d0 directions under the same model. Let g(d0) be a function that gives the

degrees of freedom in obtaining the MLE under the considered model when looking for

a dimension reduction subspace of dimension d0. Under the null hypothesis Λ(d0) is

distributed asymptotically as a χ2 distribution with g(p) − g(d0) degrees of freedom.

This statistic can be used to sequentially test for d = d0. Starting at d0 = 0 and using

always the same level α for the test, the estimated dimension ?d is the first hypothetized

value of d0 that it is not rejected.

The first two rows of Table 4.1 give g(d0) for HLDA and LAD. Though g(d0) can

be computed formally for each model, we can explain its terms easily. For HLDA, for

example, we have p parameters for the computation of the sample mean µ; (h − 1)d0
for the computation of traslated means (µ − µy) for y = 1, 2, . . . , h; hd0(d0 + 1)/2 for

estimation of Ωy, (p − d0)(p − d0 + 1)/2 for the estimation of Ω0 and d0(p − d0) from
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the fact that ρHLDA ∈ Rp×d0 lies in the Grassmann manifold of dimension d0 in Rp when

considering a semi-orthogonal basis matrix. Rearranging terms, we get the degrees of

freedom shown in the table. In computing the degrees of freedom is important to note

that setting orthogonality constraints on the projection matrix avoids estimating ρ0; it is

justed computed as the orthogonal complement for ρHLDA. To the best of our knowledge,

this simple fact has not been used in previous implementations of HLDA.

For ρLAD2 = ρA as in Section 4.4.4, a joint hypothesis d = d0, u = u0 can be tested

by using the likelihood ratio statistic Λ(d0, u0) = 2{Lfull −L(d0, u0)}, where Lfull denotes

the value of the maximized log likelihood for the full model and L(d0, u0) = L(?ρ|d0, u0) is

the maximum value of the log likelihood (4.9) for model (4.8). Under the null hypothesis,

Λ(d0, u0) is distributed asymptotically as a χ2 random variable with g(p, p) − g(u0, d0)

degrees of freedom, with g(u, d) given in the last row of Table 4.1. When there is only

one dimension involved, it is standard practice to use a sequence of hypothesis tests to

aid in its selection, as we did in HLDA and LAD before. However, in this case there

seems no natural way to order the pairs (d0, u0) for a sequence of such tests. One way

to proceed is to compare model (4.7) to the full model using the likelihood ratio statistic

Λ(u0) = 2{Lfull − L(u0)}, where L(u0) = L(?ρ|u0) is the maximum value of (4.3). Under

the null hypothesis Λ(u0) has an asymptotic χ2 distribution with the same degrees of

freedom that in the LRT for HLDA. Once again, testing is done sequentially, starting

with u0 = 0 and estimating u as the first hypothesized value that is not rejected. Having

chosen an estimate û, d can be estimated similarly treating û as known and using the

likelihood ratio statistic Λ(d0, û) for 0 ≤ d0 ≤ û. This method is inconsistent since there

is a non-zero probability that the estimates of d and u will exceed their population values

asymptotically. This probability depends on the levels of the tests. We do not regard

mild overestimation of d or u as a serious issue and, in any event, overestimation in this

context is a lesser problem than underestimation.

4.5.2 Information criteria

Simple information criteria like Akaike’s information criterion (AIC) and Bayes infor-

mation criterion (BIC) can also be used to find an estimate ?d of the dimension of the

central subspace. We can state both methods simultaneously. For d0 = 0, 1, . . . , p the

selected dimension for HLDA or LAD is

?d = argmin
d0

{IC(d0) = −2L̂(d0) + h(N)g(d0)} , (4.13)
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where N is the size of the sample, h(N) = log(N) for BIC, h(N) = 2 for AIC, and g(d0)

is the same as for likelihood-ratio tests.

For the LAD2 method, dimension selection is completely analogous, just that both u

and d are selected to minimize the information criterion IC(d0, u0) = −2LLAD2(d0, u0) +

h(N)g(d0, u0), with g(d0, u0) as given in the last row of Table 4.1 and h(N) as defined

above for AIC and BIC.

4.5.3 Permutation tests

We can make inference on d by comparing the test statistic Λ(d0) = 2(L̂p−L̂d0) defined

previously for LRT to its permutation distribution rather than a chi-squared distribution

[23]. This allows us to get a better estimation of d when assumptions are not completely

accurate. For d0 = 0, 1, . . . , p − 1, a permutation distribution for Λ(d0) is constructed

sequentially using a number P of random permutations of the sample. The observed

statistic Λ̃(d0) is then compared to this distribution to obtain a sequence of p-values for

each dimension d0. The smallest d0 that gives a p-value smaller than the test level α is

taken to be d̂. Though this method can give accurate inference on d for a large number

of permutations of the sample, the computational load can be even harder than with

cross-validation.

4.6 Experiments

In this section we use simulations to illustrate that LAD gives a better solution than

HLDA for normally distributed data when covariance matrices have no special structure.

We show that when data is distributed as in the HLDA model, dimension reduction

using LAD is as good as using HLDA, but for more general data LAD usually needs a

smaller subspace than HLDA to retain all the class-specific information. We also illustrate

the equivariance of LAD under full-rank transformation of the features and the lack of

this property for HLDA. We exclude LDA from the analysis as the constant covariance

assumption is usually too restrictive in practice.

Throughout these experiments we work with semi-orthogonal projection matrices and

use optimization over the Grassmann manifold to compute their estimators [60]. Despite
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this is the usual practice for LAD, it is not for HLDA for which unconstrained optimization

is typically used [55]. We checked that our implementation estimates a basis matrix for

the same reduction subspace than the code in [55] by verifying that the angle between the

subspaces spanned by both estimates is zero [34]. Our implementation seems to require

a smaller number of iterations until convergence. Nevertheless, neither of the codes are

highly optimized to allow for rigurous comparison of efficiency. More details on the code

used here can be found in [22].

4.6.1 HLDA vs LAD when d is known

Consider a three-class classification task and assume the data is normally distributed

as X|(Y = y) ∼ N (µy,∆y) with

µy = ρ(νy − ν̄y),

∆y = ∆ + ∆ρ(Ωy − Ω)ρT∆,

for y = 1, 2, 3. Taking ∆ = ρΩρ? + ρ0Ω0ρ
?
0, this simulation model satisfies (4.5) and the

HLDA constraints.

We first ran a simulation to compare the estimates of ρ obtained by the two methods

assuming we know the dimension d of the subspace spanned by ρ. We took d = 2, p = 10

and choose ν1 = (1,−8)T , ν2 = (4, 4)T , ν3 = (6,−7)T for the projected means. For the

projected covariances, we took

Ω1 =

?
3.00 0.25

0.25 1.00

?
Ω2 =

?
2.0 0.10

0.1 5.00

?
Ω3 =

?
1.00 −0.25
−0.25 1.00

?
,

and we fixed a diagonal covariance matrix of dimension (p− d)× (p− d) as Ω0. We used

these models to generate samples with different sizes. For each sample size, we generated

100 replicates of a learning set X and an independent equally sized testing set X T . For

each replicate, we computed ρHLDA and ρLAD using the learning set and assessed these

estimates over the testing set. We first compared the recognition rates achieved with a

standard quadratic classifier acting on the reduced subspace spanned by these estimates;

that is, using X TρHLDA and X TρLAD as features. The obtained averaged recognition

rates are shown in Figure 4.1-a). It is clearly seen that both estimators achieve the same
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Figure 4.1. Recognition rates for a standard quadratic classifier acting

on the projected features obtained with HLDA and LAD. (a) When pro-

jecting the original observations X ; (b) when projecting the transformed

observations Xη. Classification is carried out on independent testing sets

X T and X Tη, respectively.

performance. Only for very small sample sizes the projection with HLDA outperforms

that with LAD, as it is expected a priori from the data generation model, but even this

difference is very small.

Now consider the same experiment, but with the same data multiplied by an arbitrary

nonsingular matrix η ∈ Rp×p. Obtained averaged recognition rates are shown in Figure

4.1-b). It is clearly seen that using LAD for dimension reduction leads to the same results

obtained before. However, the classifier acting on the data projected with ρHLDA now

achieves a significantly poorer performance.

To get further insight into this example, we measured how close these estimates were to

ρ by computing the angle between the projected data X Tρ and the estimates X TρHLDA

and X TρLAD for each replicate [34]. Figure 4.2 summarizes the obtained results. It

can be seen that ρHLDA is closer to ρ as it is expected, given it is a more parsimonious

model for the structure of the generated data. Nevertheless, the improvement over ρLAD

is important only for small sample sizes. For Ny > 100 it is seen that the angles obtained

by both estimates remain close by around 2◦. Furthermore, boxplots show the variance

of the estimates is roughly the same provided the learning sample is not very small.

Now consider the same data, but multiplied by an arbitrary nonsingular matrix η ∈
Rp×p as before. The angles between projected transformed data X Tηρ and X TηρLAD

and between X Tηρ and X TηρHLDA are shown in Figure 4.3. Whereas angles obtained
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Figure 4.2. Angle between X Tρ and its estimates. a) Using HLDA; b)

using LAD.
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Figure 4.3. Angle between X Tηρ and its estimates after transformation

of the original predictors with a nonsingular matrix η. a) Using HLDA; b)

Using LAD.

with LAD are roughly the same as before, those obtained with HLDA are close to 90◦,

which shows that ρHLDA is no longer close to ρ. Indeed, the results show that there

remains much information in the data that is not captured by ρHLDA. This explains the

drop in recognition rates obtained for the HLDA projections in Figure 4.1-b).

It is important to note that after transforming the original data with η, the covariance

matrices are no longer structured as in HLDA. Thus, the latter example also illustrates the

performance of HLDA and LAD when data is normally distributed but with an arbitrary

covariance matrix.
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Figure 4.4. Inference on the dimension of the smallest dimension reduc-

tion subspace: a) using HLDA; b) using LAD. Figures show the fraction

F (?d = 2) of the runs in which the right dimension ?d = 2 is chosen as the

dimension of the central subspace.

4.6.2 Inference on the dimension of the sufficient subspace

We now take the simulation set up of the previous subsection to assess the methods

stated in Section 4.5 to infer about the dimension d of the minimal sufficient reduction.

We know that for these data the right choice is d = 2. Figure 4.4 shows the fraction

F (?d = 2) of the runs in which the dimension ?d chosen with these methods is actually 2 as

a function of sample size. We see that the different criteria perform very similarly for LAD

and HLDA. Inference using BIC is found remarkably accurate, and much better than the

choice given by AIC. In addition, using a test level of 5%, LRT improves when the sample

size increases giving right choices more than 90% of the times when Ny > 100 in this

example. Recall that the importance of LRT relies on the fact that it is a sequential testing

procedure that avoids assessing reductions for all possible dimensions before picking the

best choice for d.

We can also use these tools for infering about d to illustrate the minimality issue

with HLDA. We saw above that after multiplying the data with a matrix η the angle

between the subspace spanned by the true projection matrix ρ and the estimate ρHLDA

increased and that recognition rate dropped. Figure 4.5 shows now what the fraction

F (?d = 2) is for both LAD and HLDA projections of the transformed features Xη.

Again, the results obtained with LAD are the same as those shown previously for the

untransformed data. However, the fraction of the times that a dimension ?d = 2 is
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Figure 4.5. Inference on the dimension of the smallest dimension reduc-

tion subspace after re-scaling the features with a matrix η. a) Using HLDA;

b) using LAD. Figures show the fraction F (?d = 2) of the runs in which a

dimension ?d = 2 is chosen as the dimension of the central subspace.

chosen using HLDA projections is now much smaller than before. Even more, for the

transformed data XηρHLDA this fraction decreases for AIC and BIC as more observations

are available to estimate ρHLDA. For LRT at a 5% level, this fraction is zero for all sizes

of the training sample. This strongly suggests that the subspace that retains all the

class-specific information has a dimension different from d = 2 when constrained to the

HLDA model. To find out what the chosen dimension was in these cases, we carried out

a ten-fold cross validation experiment for the sample of size Ny = 100 to infer about

d based on the minimum classification error estimate as a function of d. The method

selected ?d = 9 in 46% of the times, ?d = 3 in 42% of the times, and the rest spread over

different choices for d. As the same selection method chooses ?d = 2 in all the times for

the original features, it becomes clear that after a simple linear transformation HLDA

needs more directions to retain the class information. On the other hand, LAD continues

on needing the same number of directions to do it.

4.6.3 The minimality issue revisited

To further study the lack of minimality of the HLDA estimate and compare it to LAD

and the correction proposed in Section 4.4.3, we carried out another simulation using

data generated from a model that has the covariance constraint of HLDA but allows for

a further reduction according to (4.9). For this study we took p = 20, u = 3 and d = 1,
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Figure 4.6. Angle between the central subspace and several estimates for

a sample of size Ny = 500. Boxplots were constructed after 100 runs of the

experiment, using data with covariance structure as imposed in HLDA but

that allows for further reduction according to (4.9).

defined ρ ∈ Rp×u and α ∈ Rp×d and obtained A = ρTα. The central subspace is span(α).

Figure 4.6 shows obtained angles between the central subspace and several estimates:

ρHLDA ∈ Rp×u, ρHLDA ∈ Rp×d, ρLAD ∈ Rp×d, and ρLAD2 ∈ Rp×d. These estimates are

referred to as HLDAu, HLDAd, LADd and LAD2u,d in the figure, respectively. This figure

corresponds to 100 replicates of the experiment, using a sample size of 500 observations

per class.

It is seen that ρHLDA ∈ Rp×u is closer to the central subspace than all of the other

methods. This is not a surprise because it assumes the exact structure of covariance

matrices and contains the central subspace in the population. However, this reduction

retains three directions to use as features. On the other hand, the rest of the estimators

retain only one transformed feature. Between them, it is seen that ρHLDA ∈ Rp×d clearly

fails to span the central subspace. Nevertheless, both ρLAD and ρLAD2 remain very close

to the central subspace.

In other simulations with less observations available, ρLAD2 showed a degraded perfor-

mance, as also did ρHLDA ∈ Rp×u (not shown). Boxplots of the angles between the central

subspace and these estimates becomes larger, showing a greater variablity in the obtained

values compared to LAD. In addition, in a few replicates the estimates for these methods

correspond to local maxima of the log likelihood function. These cases appear as outliers

in the shown boxplots. Further investigation is needed to find optimal initialization of

the numerical algorithm.
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Figure 4.7. Linear projection of pen-digits data to a two-dimensional

subspace. a) Using HLDA; b) using LAD.

4.6.4 Pen digits data

Let us take some real data to further illustrate the different performances of LAD and

HLDA. Consider the pen digits dataset from the UCI machine learning repository3. The

sample was taken from 44 subjects, who were asked to write 250 random digits. Using

standard preprocessing techniques, each written digit yields a 16-dimensional feature

vector which is used for classification. The 44 subjects were divided into two groups of

size 30 and 14, in which the first formed the training set and the second formed the test

set. Figure 4.7 illustrate dimension reduction of the feature vectors from the training set

to a subspace of dimension d = 2. This transformation would serve as a preparatory step

for developing the classifier. For clarity, we only took the digits 0, 6 and 9, which reduced

the sample to 2,219 cases. This subset has also been considered previously for illustration

purposes [95]. The data projected using LAD results in separate clusters for each class,

which could be well-modeled using Gaussian distributions. HLDA projections, on the

other hand, show a worse defined distribution and some overlap over the classes. The

different quality of these reductions impact on the performance of the classifier. Using a

standard quadratic classifier on the two-dimensional subspace of the projected features,

the error rate with HLDA projections is 5%. Using LAD projections instead of HLDA

projections, the error rate reduces 60% down to 2%. To get an error rate close to that

for LAD for this dataset, HLDA needs to retain four directions instead of two.

3ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits
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4.7 SDR for hidden Markov models

In Sections 4.3–4.5 we discussed likelihood-based SDR methods for normal models. It

turns out that this is all we need to use the SDR methodology for dimension reduction of

GHMM. As exploited previously in [56, 55, 81], the connection relies in using the EM

algorithm for parameter estimation.

To start with, let us restate the dimension reduction problem for a classification task

involving sequential data. Assume we have a set X = {Xn} of sequences of observed

feature vectors xn
t ∈ Rp; that is Xn = {xn

1 ,x
n
2 , ...,x

n
Tn
}. Each sequence comes from one

out of h classes and may have a different number Tn of observed vectors, but all xn
t are in

the same feature space, regardless of the class. When we use an homogeneous HMM ϑj

to model a sequence from class cj , we assume that each xn
t is drawn from a probability

model bjqt(x
n
t ) = p(xn

t |qt, ϑj), conditional on the state of the underlying Markov chain at

time t. Let X stand for the observed vectors of features as a random variable (that is,

xn
t is a realization of X). The semi-othogonal matrix ρ is a basis matrix for a sufficient

dimension reduction subspace if X |(ρTX, qt, ϑj) ∼ X |(ρTX, ϑj). That means X and

ρTX have the same information about the state qt for the model ϑj . Thus, when bjqt is a

normal model as in GHMM, the dimension reduction problem resembles one for normal

data in which each of the conditional models bjqt take the role of a “class model” for the

dimension reduction task.

Nevertheless, there still remain two points to take care about. On the one hand, the

dynamics of the model: how do we link the reduction at time t with the one at time

t + 1 retaining the statistical dependence of the observed features? On the other hand,

the dimension reduction problem for normal models discussed previously was a fully

supervised one. That is, for each observation in the training set we knew the population

from where it came. This is not the case in the current setting, as knowing that xt

comes from state qt is the same as knowing everything about the sequence of states that

generated the data. Recall that the states qt are hidden to the observer. Thus, data must

be labeled in some way to adapt our previous derivations up to HMM. How do we do

that?

The key point is that the EM algorithm povides an answer to both the questions above,

as already shown in [56, 55, 41]. Remember from Chapter 2 that ML estimates of the



4.7. Sufficient dimension reduction for HMM 83

parameters of model ϑ are obtained by maximizing an auxiliary objective function

Q(ϑ, ϑold) =
?

q

p(q|X, ϑold) log p(q,X|ϑ)

=
?

q

p(q|X, ϑold)×
??

t

log aqt−1qt +
?

t

log bqt(xt)

?

= Qa(ϑ, ϑ
old) +Qb(ϑ, ϑ

old).

Once the posterior p(q|X, ϑold) has been computed in the E step of the agorithm, the

dimension reduction process affects Qb(ϑ, ϑ
old) only. In fact, we saw that this function

can be written as

Qb(ϑ, ϑ
old) =

Nq?

j=1

T?

t=1

p(qt = j|X, ϑold) log bj(xt)

=

Nq?

j=1

T?

t=1

γt(j) log bj(xt),

where the quantities γt(j) are computed in the E step of the iteration and remain fixed

in the M step. When bj(xt) is a normal model, this function resembles the starting point

to derive the log-likelihood functions for the SDR methods discussed previously, with?T
t=1 γt(j) taking the rol of Nj , the number of observations from the population j. Thus,

γt(j) acts as a sort of label for the feature vector xt; it does not tell us certainly the state

from where the observation comes but it gives us the probability of being drawn from

state qt = j. Furthermore, if we were training the models using a strategy like Viterbi’s

algorithm instead the full EM algorithm [79], γt(j) would be replaced by δt(j) which

takes a value 1 when xn
t is most probably drawn from the normal model bj(xt) and zero

otherwise. In this case, the observations are labeled as in the fully supervised case and

it is clear that
?T

t=1 δt(j) = Nj . If we want to use LAD, for instance, we need to replace

bj(xt) with a normal density with parameters µj and ∆j as in (4.5).

There is a last point that must be addressed in practice. In HMM-based classifiers,

we have an HMM for each class. When no dimension reduction is added to the training

process, each HMM is trained independently of the others, using only the data available

for that class to maximize the likelihood p(Xj |ϑj) given in (2.5), where Xj is the training

set for class cj . In this case the estimation process repeats the steps we breafly discussed

in Chapter 2, once for each class.

However, if we want to estimate a unique sufficient dimension reduction for all the h

classes, we have to compute it taking into account the expectation of joint likelihood of



84 Discriminative dimension reduction: a sufficiency approach

all the data. In the non-transformed feature space it can be written as

Q̃ρ =
h?

j=1

?

X∈cj

Nq?

i=1

Tn?

t=1

γj
t (i) log b

j
i (x

n
t ) + const,

where we have assumed left-to-right hidden Markov models, all of them with Nq hidden

states. Thus, we need to compute γj
t (i) for each model ϑj using the training set for

that class only, but we need to estimate the basis matrix ρ for the reduction using the

likelihood of all the dataset. Once we have an estimate of ρ, it is straightforward to

update the parameters for the observation models in each HMM using ρ, γj
t (i) and the

observed data.

4.8 Concluding remarks

In this chapter, we have focused on information retention when using likelihood-based

methods for dimension reduction of normally distributed data. LDA and HLDA have

been analyzed under the framework of likelihood-based sufficient dimension reduction

and conditions on the data have been stated in order to allow these methods to retain all

the class information. It has been shown that HLDA often needs to retain more directions

than the strictly necessary, to account not only for all the class information but also to

satistfy the assumed structure in the covariance matrices. On the other hand, it has

been shown that the LAD estimator provides a better solution for subspace projection of

heteroscedastic data without constraints, giving a reduction that is minimal and satisfies

an important invariance property. In addition, a new estimator LAD2 was introduced to

deal with data that actually have a structured covariance matrix as assumed in HLDA.

Unlike HLDA, however, the proposed method guarantees minimal reductions and it is

more efficient than LAD for this type of data. Understanding existing methods under

sufficiency has allowed us to state inference methods about the dimension of the smallest

reduction subspace that is sufficient to retain class information. This interpretation

has led also to new implementations of the existing methods using matrix orthogonality

constraints that seem to improve computational efficiency and avoids explicit computation

of the rejected non-discriminant subspace. Finally, the extension of all SDR methods to

HMM has been discussed, taking advantage of the EM algorithm. Further experimental

work is needed to quantify how much the theoretical properties of these estimators lead

to practical advantages.



CHAPTER 5

Conclusions and further research

In this thesis, discriminative information in HMM-based classifiers has been addressed

from two different points of view. On one hand, a new training method for HMM-

HMT models was proposed, which uses information from all the classes to emphasize

differences between the models in order to minimize the expected classification error

rate. On the other hand, retention of discriminative information when applying linear

dimension reduction in GHMM-based classifiers was analyzed using the framework of

sufficient dimension reduction. In this regard, we advanced in understanding information

loss when using existing methods, and new reductions for HMM that are optimal in the

sense of sufficency were proposed using results for normal populations as a building block.

The discriminative training method for HMM-HMT models introduced here extended

the minimum classification error approach to sequences of data observed in the wavelet

domain and modeled through HMT. An adaptation of the Viterbi algorithm was used

to define the set of discriminant functions. The training algorithm also required special

considerations about the HMT observation models and the feature space to derive useful

measures of misclassification to approximate the decision risk of the classifier. In par-

ticular, comparing the order of magnitud of the discriminant functions was found better

than weighting their actual values. The resulting algorithm does not only penalize con-

fusability of the training patterns to drive the learning process, as previous methods do,

but also do it with increased strebgth for misclassified observations. In this way, it adds a

corrective actuation that it is not usual in standard settings of MCE training but proves

to work well in this context.

85
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Experiments in phoneme recognition showed that the proposed method consistently

outperforms traditional ML training for a given structure of the classifier, reducing error

rates up to 18%. It is interesting to note that improving performance of HMM-HMT

models in sequential pattern recognition tasks is important because no engineered feature

extraction stage is required in such classifiers. Those feature extraction stages are often

heuristic and very specific for the application. In this regard, pattern recognizers based

on HMM-HMT models would be essentially similar for a broad range of applications.

Fully untied models were used in these developments and the specific structure of the

HMM-HMT models was assumed known. While this structure can be chosen, for in-

stance, using k-fold cross validation, having better alternatives for selecting it automat-

ically would be useful in practice. When the availability of training data is too limited,

tying parameters should also be useful to reduce the number of parameters to estimate.

Nevertheless, choosing what parameters to tie should be carried out using rigurous tests

that need to be developed for these models. Both points will be addressed in future work.

It should be noted, nevertheless, that the same statements are valid for almost all types

of HMM-based classifiers.

From an applications point of view, up to date the proposed algorithm for MCE train-

ing of HMM-HMT models has been used only with one-dimensional sequences. As the

most important applications of HMT lies in imaging science, extensions of the proposed

method to a bi-dimensional domain seems promising and will also be explored.

In the second part of the thesis, linear dimension reduction for GHMM-based classi-

fiers was revisited, taking care of information loss that can be important to discriminate

between classes. The framework of sufficient dimension reduction, which explicitely ac-

counts for information retention, allowed us to analyze existing methods often used with

GHMM-based classifiers and to propose new methods that achieve optimality in the sense

of sufficiency. Both LDA and HLDA were analyzed in this framework and it was empha-

sized that the LAD estimator provides a natural way to deal with normal data, as it does

not impose any restrictive constraint on the covariance structure of the populations.

On one hand, understanding LDA under the SDR methodology confirmed that LDA

is optimal only when the Gaussian data have constant covariance matrix over all the

classes. In addition, this analysis provided a ML interpretation for LDA that differs from

the one that is commonly referred to in HMM-based applications. We have shown that

such interpretation of LDA as a especial case of HLDA assumes aditional structure on

the covariance matrices, not just being the same for all the populations.

Regarding HLDA, it was shown that this reduction method can always retain all the

class information provided it projects the original features to a subspace that is large
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enough. Nevertheless, the needed directions may be significantly more than the mini-

mum attainable, as achieved using LAD. This can be seen from another point of view.

In applications, the dimension of the retained subspace is often fixed a priori because

of practical considerations. Because HLDA is not optimal, it usually loses more relevant

information than LAD for the fixed dimension. In addition, the HLDA estimator has no

invariance property, which means that it changes completely under full-rank transforma-

tion of the features.

The lack of optimality of HLDA is due to the special covariance structure of the normal

populations assumed by the method, which results from imposing strong independence

in the transformed domain between the subset of discriminative directions and the rest

of the coordinates that are equally distributed over all the classes. It turns out that this

requirement of independence is not actually needed to reject those equally distributed

coordinates as being relevant for classification. That flexibility is exploited by LAD to

achieve a reduction that loses no information, is minimal, is equivariant and, unlike LDA

and HLDA, imposes no constraints on the covariance of the models.

To the best of our knowledge, the LAD estimator had not been used previously in

applications, neither yet in HMM-based classifiers. Using simulations, we strieved to

emphasize the equivariance property of this estimator, which is important in applications

and it is not a claimed attribute of other methods. Computational complexity for LAD

is in the same order that for HLDA. Furthermore, it has been proved analytically that

LAD performs well even when data deviates from normality. Summing up all these good

properties, it seems clear that LAD is a better alternative to HLDA in GHMM-based

applications. It was shown also that extending the method from normal populations to

HMM is relatively easy. Though this extension follows the same guidelines as in HLDA, it

should be clear that the resulting method has a theoretical background, is optimal in the

sense of information retention and does not require a special structure on the covariance

matrix of the observation models of the HMM.

Nevertheless, if the data were normally distributed satisfying the covariance structure

assumed in HLDA but the minimal reduction were smaller than the one provided for that

method, LAD would estimate the minimal reduction but lossing efficiency. To address this

case, a new estimator LAD2 was introduced that both exploits the covariance structure

of the data and achieves a minimal reduction.

On the computational side, the sufficiency approach led us to optimization algorithms

with orthogonality matrix constraints. Though this is the standard practice in SDR, it

was not in the implementations of LDA and HLDA used for instance in speech recognition.

Understanding these methods under the sufficiency framework allowed us to implement
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them with the same tools used for SDR. These orthogonality-constrained implementations

showed improved efficiency over the more standard unconstrained optimization.

Finally, it is important to emphasize that the methods and implementations discussed

here estimate the columns of the projection matrix jointly, not in a sequential fashion.

This is important to guarantee that the obtained estimate actually achieves the MLE.

Understanding HLDA under the suffcienty framework also allowed us to derive meth-

ods to infer about the dimension d of the reduced subspace that is sufficient to retain

all the class information. We explored Akaike and Bayes information criteria, along with

likelihood-ratio tests and permutation tests. Inference on d by BIC was found specially

good, taking into account computational load.

Simulations were used to highlight the main points of all of these developments, and

an example using a real dataset of handwritten digits confirmed the advantages of using

LAD over HLDA. In this example, projecting the features from a 16-dimensional space

to a subspace of dimension 2 and classifying in this smaller subspace, error rate was 5%

for HLDA and 2% for LAD, which implies an improvement of 60% using the latter.

Future work should address extensive experiments to quantify the performance of LAD

and LAD2 in HMM-based classifiers targeted to real-life applications, in order to verify

if their theoretical advantages translate into practical interest. In this regard, extensions

of the methodology to allow for multiple subspace projections is also of importance.

Furthermore, in current developments of the SDR methodology, all the original features

are linearly combined and then just a few of those linear combinations are retained. In

future work, it would be interesting to explore adding variable selection procedures to

reject some coordinates from the linear combinations. In addition, nonlinear sufficient

dimension reduction is a field hardly addressed yet that can be explored.



CHAPTER A

Proofs for Section 3.3.3

A.1 Updating formulas for observation models

Let us consider the training formulas for the Gaussian means. We begin noting that

the discriminant functions read:

gj(W; Θ) =

????log
?
max
q,R

?
Lϑj

(W,q,R)
??????

= − log

?
max
q,R

?
T?

t=1

aqt−1qt

?

∀u
?q

t

u,rtur
t
ρ(u)

f qt

u,rtu
(wt

u)

??

= −
?

t

log aq̄t−1q̄t −
?

t

?

∀u
log ?q̄

t

u,r̄tur̄
t
ρ(u)

−
?

t

?

∀u
log f q̄t

u,r̄tu
(wt

u) ,

where, q̄t and r̄t refer to states in the external HMM and the corresponding HMT model,

respectively, that achieve the maximum joint likelihood. To find (3.15), we know that we

need

∂?i(W; Θ)

∂µ̃
(j)k
u,m

=
d?i(W; Θ)

ddi(W; Θ)

∂di(W; Θ)

∂gi(W; Θ)

∂gi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∂gi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∂
?

t

?
∀u log f

q̄t

u,r̄tu
(wt

u)

∂µ̃
(j)k
u,m

.
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In the expression above, we used ζ defined in Section 3.3.3. As observations in a node

depends only on the state of that node, we have

∂?i(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∂
?

t log f
q̄t

u,r̄tu
(wt

u)

∂µ̃
(j)k
u,m

.

As the sum takes into account only the most likely states in the node of the HMT related

to the most likely state of the HMM in a given frame, we write

∂?i(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
?

t

δ(q̄t − k, r̄tu −m)
∂log f q̄t

u,r̄tu
(wt

u)

∂µ̃
(j)k
u,m

.

= −ζ
?

t

δ(q̄t − k, r̄tu −m)
∂µ

(j)k
u,m

∂µ̃
(j)k
u,m

∂log f q̄t

u,r̄tu
(wt

u)

∂µ
(j)k
u,m

.

Noting that ∂µ
(j)k
u,m/∂µ̃

(j)k
u,m = σ

(j)k
u,m and that we are using an univariate Gaussian distribu-

tion for f q̄t

u,r̄tu
(wt

u), we get (3.15).

The steps to derive the updating formulas for the Gaussian variances are completely

analogous.

A.2 Updating formulas for transition probabilities

The procedure applied above also works well for transition probabilities, both in each

HMT and in the external HMM of the whole HMM-HMT. Let us consider the estimation

of the transition probabilities in the internal HMT. Reasoning as above, we just need

∂?i(W; Θ)

∂?̃
(i)k
u,mn

= −ζ

?
t log ?

q̄t

u,r̄tur̄
t
ρ(u)

∂?̃
(i)k
u,mn

.

Remembering of the transformation for this transition probabilities and proceeding as

before to account for the most likely states in each frame, we get

∂?i(W; Θ)

∂?̃
(i)k
u,mn

= −ζ
?

t

?

p

∂?
(i)k
u,pn

∂?̃
(i)k
u,mn

∂ log ?q̄
t

u,r̄tur̄
t
ρ(u)

∂?
(i)k
u,pn

= −ζ
?

t

?

p

δ(q̄t − k, r̄tu − p, r̄tρ(u) − n)
∂?

(i)k
u,pn

∂?̃
(i)k
u,mn

∂ log ?ku,pn

∂?
(i)k
u,pn

.
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We now see that for p ?= m, we have ∂?(i)ku,pn/∂?̃
(i)k
u,mn = −?

(i)k
u,pn?

(i)k
u,mn and for p = m we have

∂?(i)ku,pn/∂?̃
(i)k
u,mn = ?

(i)k
u,mn(1 − ?

(i)k
u,mn). Replacing these results in the formula for the gradient

and reordering, we get (3.17). An analogous procedure applies to derive the updating

formulas for transition probabilities in the external HMM.





CHAPTER B

Proofs for Section 4.4.3

Let X|Y ∼ N (µy,∆y), with

µy = µ + ρΩAνy ,

∆y = ρΩρT + ρ0Ω0ρ
T
0 + ρΩATyA

TΩρT ,

so that the central subspace is α = ρA. Estimation of the parameters in model (B.1)

is facilitated by centering so that the MLE of µ is X̄. The transformed vectors ρTXy

and ρT
0 Xy are independent, with means ρTµ+ΩAνy and ρTµ, and covariance matrices

Ω+ΩATyA
TΩ and Ω0, respectivly. Thus the likelihood factors in these quantities, and

leads to the log-likelihood maximized over all the parameters

L(ρ,A,Ω0,Ω|d, u) = L0 + L1(ρ0,Ω0|u) + L2(ρ,A,Ω|d, u)
where

L0 = −(np/2) log(2π)
L1(ρ0,Ω0|u) = −(n/2) log |Ω0| −

−1

2

H?

y=1

ny?

i=1

{ρT
0 (Xyi − X̄)}TΩ−1

0 ρT
0 (Xyi − X̄)

L2(ρ,A,Ω|d, u) = −n

2
log |Ω + ΩATyA

TΩ| −

−1

2

H?

y=1

ny?

i=1

CT (Ω + ΩATyA
TΩ)−1C.
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Here we have used C = ρT (Xyi − X̄) − ΩAνy. It follows that L1 is maximized over Ω0

by ?Ω0 = ρT
0 Σ̃ρ0. Substituting back, we find the following partially maximized form for

L1:

L1(ρ0|u) = −(n/2) log |ρT
0 Σ̃ρ0| − n(p− u)/2.

For fixed ρ, the log likelihood summand L2 is in the same form as the likelihood considered

for LAD model, with the parameters and variables redefined as ∆ → Ω, p → u, α → A

and (Xy − X̄) → ρT (Xy − X̄). Thus for fixed ρ we have from (4.6) a partially maximized

version of L2:

L2(ρ|d, u) = −un/2 + n/2 log |ATρT Σ̃ρA|

−n/2 log |ρT Σ̃ρ| − 1/2
H?

y=1

ny log |ATρT Σ̃yρA|.

Substituting back in L we get

L(ρ|d, u) = −(pn/2)[1 + log(2π)] + n/2 log |ATρT Σ̃ρA| −

−n/2 log |ρT Σ̃ρ| − 1/2
H?

y=1

ny log |ATρT Σ̃yρA| −

−n/2 log |ρT Σ̃
−1
ρ|.
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