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RESUMEN EXTENDIDO – EXTENDED ABSTRACT (IN SPANISH) 

 
Escalas Espaciales en Canales Aluviales: Sobre Estructuras Turbulentas 
Coherentes Bidimensionales (2D) y la Formación de Barras Alternadas. 

 
Spatial Scales in Alluvial Channels: on 2D Coherent Turbulent Structures and 

Alternate Bar Formation 

 

INTRODUCCIÓN 

Cuando un flujo debe ser modelado 
física o numéricamente es importante 
entender cuales son las escalas que 
caracterizan o tipifican el problema. En un 
gran río de llanura coexisten una extensa 
variedad de escalas espaciales que tipifican 
diferentes procesos; desde una onda de 
crecida –de cientos de kilómetros de 
extensión, definida por una escala basada 
en un evento hidrológico – hasta la 
disipación de energía turbulenta que tiene 
lugar en escalas del orden del tamaño del 
sedimento que forma parte del lecho. En el 
medio, hay una multitud de procesos, 
como la generación de meandros o la 
formación de islas, que definen grandes 
escalas espaciales bidimensionales (2D). A 
su vez, la interacción entre un flujo 
turbulento a superficie libre y su lecho 
erosionable produce una gran variedad de 
formas de fondo, las que adquieren 
diferentes características en función de la 
escala que las tipifica. Estas son: 

• micro escala (del orden del tamaño 
de la partícula de sedimento) caracterizada 
por la presencia de rizos, 

• macro-escala (del orden del tirante 
o profundidad local del flujo) lo que se 
conoce como lecho cubierto con “dunas”, o 

• mega-escala (del orden del ancho 
del canal), situación tipificada por la 
presencia de “barras” o bancos de arena.  

Es común encontrar situaciones 
prácticas donde todas las escalas del 

proceso de transporte actúan 
simultáneamente, rizos o mega-rizos 
propagándose sobre dunas, las que a su vez 
migran sobre barras no estacionarias que se 
desplazan muy lentamente en la dirección 
de la corriente; en contraposición a las 
barras estacionarias, causantes de la 
meandrosidad de cauces. Las ecuaciones 
de Navier-Stokes (NS) acopladas con una 
ecuación de conservación de la fase sólida 
(transporte de sedimento) son utilizadas 
para describir este fenómeno a escala de 
rizos. Sin embargo, a una escala mayor, 
para capturar las características más 
importantes del problema son usadas las 
ecuaciones de aguas poco profundas 
(SWE). Las SWE se obtienen 
simplificando la hidrodinámica del flujo 
por medio de una promediación en la 
dirección vertical, bajo el supuesto de 
distribución hidrostática de presiones. 
Como resultado se obtiene un problema 
bidimensional donde las principales 
variables son los promedios verticales de 
las velocidades horizontales del flujo y la 
profundidad del mismo (Tassi, 2007). Los 
flujos en canales compuestos, aguas 
costeras, lagos poco profundos y las capas 
bajas de la atmósfera, son sólo algunos 
ejemplos de los tantos problemas de interés 
científico y también ingenieril que 
satisfacen la condición / 1h l << , ellos 
pueden ser resueltos usando la 
aproximación de aguas poco profundas. 
Donde h representa una medida de la 
extensión vertical de la lámina de agua, y l 
representa una escala espacial que tipifica 
el comportamiento ondulatorio del 
fenómeno, que puede variar desde una 
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onda de crecida hasta una onda de 
sedimento del lecho (barra, duna, o rizo). 

El objetivo de este trabajo de tesis es la 
compilación de las experiencias adquiridas 
durante ensayos realizados en dos 
instalaciones experimentales, en las cuales 
se estudiaron dos fenómenos diferentes que 
pueden ser abordados a través de la 
aproximación de aguas poco profundas. 
Primero se analiza el problema de la 
separación de escalas que tiene lugar en un 
flujo turbulento poco profundo y de gran 
desarrollo horizontal. Esto es el producto 
de una trabajo experimental llevado a cabo 
en el laboratorio de Hidráulica de la 
Facultad de Ingeniería y Ciencias Hídricas, 
UNL, Argentina. Luego se estudia la 
formación de barras alternadas en un canal 
de régimen, para diferentes condiciones 
hidráulicas y rugosidad de márgenes. Esta 
última experiencia se llevó a cabo en el 
Laboratorio de Hidráulica de la Escuela de 
Ingeniería y Geociencia (School of 
Engineering and Geoscience) de la 
Universidad de Newcastle upon Tyne, 
Inglaterra. 

SEPARACIÓN DE ESCALAS EN UN 
FLUJO TURBULENTO POCO 
PROFUNDO 

El caso de estudio simula la situación 
donde un flujo con muy bajo gradiente se 
aproxima a un puente aliviador ubicado en 
la planicie de inundación de un gran río de 
llanura (Figura 0.1). Aguas arriba del 
puente aliviador el flujo es básicamente 
bidimensional, poco profundo y sin 
restricciones laterales. En la aproximación 
al puente se acelera generando un proceso 
de erosión con características 
esencialmente 3D alrededor de las pilas y 
estribos del puente (Schreider et al., 1998; 
Melville and Coleman, 2000). A lo largo 
de este proceso de aproximación ocurre, 
eventualmente, una segregación de 
estructuras turbulentas 2D y 3D que 
almacenan energía turbulenta por separado. 
Mientras la energía cinética turbulenta 2D 
es almacenada y transportada por los 
remolinos horizontales (l1) de mucho 

mayor tamaño que la profundidad del agua 

1/ 1h l << ; la energía cinética turbulenta 3D 
es confinada a pequeños remolinos cuyo 
tamaño l2 es controlado por la escala de 
longitud que confina el flujo a superficie 
libre, es decir, la profundidad del agua h 
(Gulliver and Halverson, 1987). En el 
trabajo se propuso analizar la respuesta 
espectral del flujo a medida que se 
aproxima a la contracción, con el propósito 
de verificar si tal segregación espectral 
entre estructuras 2D y 3D era no sólo 
físicamente admisible – como postulaban 
mucho autores – sino detectable con los 
medios disponibles. 

 
Figura 0.1 Fotografía del patrón de flujo 
establecido en el gran cuenco experimental de la 
FICH. 

Las ecuaciones de Navier-Stokes para 
turbulencia 2D, donde la velocidad del 
flujo es u ( )0,, 21 uu= y la vorticidad 
ω ),0,0( ω= , proveen un modelo de 
evolución para el valor medio cuadrático 
de la energía cinética ( >< 2

u ) y de la 
vorticidad ( >ω< 2 ) 

2
2

2
2

2 ,

2

d

dt

d

dt

ν ω

ω
ν ω

< >
= − < >

< >
= − < ∇ >

u

 (1) 

Resulta ser que hay dos integrales del 
movimiento en el límite 0ν →  (problema 
de cierre de la turbulencia 2D, según 
Batchelor (1969)). Kraichman (1967) 
demostró que para una turbulencia forzada 
a una tasa ∈ y tasa de transferencia de 
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enstrofía ( )2 /d dtβ = < ω > , hay dos 

cascadas de energía bien diferenciadas en 
el rango inercial de transferencia de 
energía turbulenta 

33/2

3/53/2

)(

)(
−

−

β≅

≅∈

kkE

kkE
 (2) 

Puesto que el flujo de energía cinética a 
través de una cascada de enstrofía es cero 
(Kraichnan, 1967), la energía cinética 
producida a tasa ∈  en el número de onda ki 
solamente puede ir hacia escalas mayores 
que 1/ ik  a través de una cascada inversa. 

La Figura 0.2 muestra esquemáticamente 
lo discutido hasta ahora. 

i∈

ik

53/2 −∈ k

33/2 −β k

k
 

Figura 0.2 Cascada inversa en el rango inercial de 
turbulencia 2D 

En consecuencia, y con el fin de 
calcular la respuesta espectral del flujo, se 
midieron las velocidades en 4 puntos 
alineados desde aguas arriba – aguas abajo 
del ingreso al cuenco de ensayo – hasta la 
vecindad de la contracción, levemente 
aguas abajo de la hoya de erosión presente 
en el extremo del estribo (ver Figura 0.1). 
Las Figura 0.3 y Figura 0.4 muestran los 
cambios en la respuesta espectral del flujo 
en la medida que se aproxima a la 
contracción. Los puntos A y B se ubican 
aguas arriba de la contracción, donde el 
flujo se comienza a acelerar, el punto C se 
ubica sobre la contracción, en el interior de 
la hoya de erosión local, y el punto D se 
encuentra, aguas abajo de la contracción, 
donde el flujo se expande nuevamente.  

 
Figura 0.3 Superposición de los espectros medidos 
en los puntos B, C y D en escala linear (el segundo 
eje vertical esta referido al espectro del punto). 

Los experimentos muestran que la 
geometría y la topografía del canal crean 
un flujo turbulento con dos estructuras bien 
definidas: una componente cuasi-
bidimensional de gran escala (l1) y otra 
componente tridimensional de pequeña 
escala (l2). Las cuales pueden ser 
identificadas en dos picos bien definidos 
del espectro de energía. 

A pesar de que la separación de escalas 
es de un orden de magnitud mayor que la 
condición

( )2 3
F F/ ~ C / ~ 3.9x10 C ~ 2.5x102 1 2 1l l l l − −>

derivada a partir de la teoría de aguas poco 
profundas, la condición de separación 
espectral 1/ 21, <<kkd  es claramente 

apreciable. Además, la turbulencia de 
pequeña escala generada en la hoya de 
erosión verifica la restricción 1/2 <hl , 

~ 0.15 / 0.30 0.5α = . 
La geometría del canal fuerza una 

transferencia de energía, inicialmente 
almacenada en la escala 5~/ hlo , hacia 

escalas mayores a través de un proceso de 
cascada inversa. Dicho proceso continua 
hasta que las escalas del tamaño de la 
geometría del flujo (lg) han sido 
completamente excitadas. También 
descubrimos que el espectro resultante 
presenta una relación k3 y k–3 (cascada de 
enstrofía) alrededor de la longitud de onda 
más larga (lg

−1).  



 xiv 

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

-5/3

E
f

f(Hz)

-5/3

E
f

f(Hz)

-3

-1 -5/3

E
f

f(Hz)

-5/3

E
f

f(Hz)-5/3

3
D

10
-2

10
-1

10
0

10
1

10
210

-1

10
0

10
1

10
2

-1

-3

-3

-3E
f

3

f(Hz)

C

-1

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

-5/3

E
f -3

f(Hz)

B

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

-5/3

E
f

-3

f(Hz)

A

 
Figura 0.4 Espectros de energía estimados con la 
técnica de Fast Fourier Tranform (FFT technique). 
a) espectro de u’ y w’ en 4x = − m, b) u’ y w’ en 

1x = − m, c) u’ y w’ en 0x = m, d) u’ y w’ en 
0.75x = m. 

Este rango del espectro con potencia 3 
y -3 puede reproducirse a través 
simulaciones numéricas basadas en 
técnicas de simulación de grandes ondas 
largas (Large Eddy Simulations – LES). 

Los efectos de la topografía, los cuales 
son locales debidos a la forma de la hoya 
de erosión, generan una gran cantidad de 
energía cinética turbulenta que se 
concentra en las pequeñas escalas. Las 
variaciones topográficas del lecho inyectan 
una gran cantidad de turbulencia a pequeña 
escala en el flujo, la cual se difunde hacia 
las escalas mayores a través de otro 
proceso de cascada inversa mientras son 
transportadas hacia aguas abajo por el flujo 
medio. En consecuencia, la topografía del 
canal reduce los efectos del número de 
Reynolds para las grandes escalas de 

ν′ /11lu  a 2211 / lulu ′′  aguas debajo de la 
región que presenta un alto gradiente 
topográfico. 

ESTUDIO DE LA FORMACIÓN DE 
BARRAS ALTERNADAS CON 
MÁRGENES EROSIONABLES Y NO 
EROSIONABLE 

Las barras alternadas son estructuras de 
una gran escala espacial. Generalmente 
presentan escalas verticales del orden del 
tirante hidráulico, y escalas longitudinales 
del orden de varias veces el ancho del 
canal. Son estructuras típicamente 
tridimensionales, y en consecuencia, se 
requiere emplear al menos dos 
dimensiones (2D) para capturar la esencia 
del proceso (Colombini et al., 1987). Es 
decir, se proyecta el problema sobre el 
plano horizontal y se trabaja con valores 
promediados en la vertical (resultado de la 
conocida aproximación de ondas largas).  

Se propuso hacer un estudio 
comparativo para analizar las diferentes 
respuestas del lecho – si las hay – si se 
parte con márgenes erosionables ó no 
erosionables bajo idéntico caudal sólido y 
líquido, y pendiente del lecho. El propósito 
era dilucidar si la formación de barras 
alternadas es la escala espacial preferida 
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del problema, retardando la migración 
lateral del canal, por erosión de sus 
márgenes, a escalas de tiempo mucho más 
largas. Bajo este supuesto, la formación de 
barras alternadas se puede interpretar como 
un estado de transición morfodinámico 
para cualquier canal con lecho y márgenes 
erosionables, cuya evolución final es muy 
posiblemente un río meandriforme o 
anastomosado. Como un subproducto, se 
puso como objetivo la obtención de datos 
de laboratorio de alta calidad para ser 
utilizados en la validación de códigos 
numéricos existentes o en desarrollo, y que 
busquen simular el proceso estudiado en 
este trabajo (Federici and Seminara, 2003; 
Tassi et al., 2007). 

En esta parte de la tesis, se utilizó un 
canal recto de 22m de largo y 2.5m de 
ancho, cubierto con una capa de 0.6m de 
espesor de sedimento uniforme (arena de 
cuarzo de 50 0.94D = mm (Figura 0.5 y 
Figura 0.6). El canal posee un sistema de 
recirculación de la mezcla de agua-
sedimento.  

 
Figura 0.5 Canal de laboratorio usado en 
Newcastle University, Newcastle upon Tyne, UK. 

Los ensayos realizados incluyeron 
situaciones con márgenes erosionable 
(ME), y no erosionables (MNE). Para el 
caso MNE, se fijaron las márgenes con 
delgadas placas de metal evitando toda 
interacción lecho-márgenes, mientras que 
para los ensayos ME, se permitió que las 
márgenes interactuaran libremente con el 
lecho y el flujo (Figura 0.6). El modo de 
transporte imperante durante los ensayos 

fue de carga de fondo solamente. Se 
ensayaron descargas entre 6 l/s y 10 l/s. 

 

 
Figura 0.6 a) Experimentos con márgenes no 
erosionables (MNE). b) Experimentos con 
márgenes erosionables (ME). 

Partiendo de condiciones iniciales 
predichas por la teoría de régimen (White 
et al., 1981) se encontró que para el caso 
de ME la geometría global del canal se 
reconfigura, elevando el nivel del lecho y 
retrabajando las márgenes aunque sin 
generar meandrosidad en las 15-20hr de 
duración de los ensayos (Figura 0.7). Este 
reconfiguración de la geometría del canal 
fue más acentuada en unos casos que otros, 
indicando que las condiciones iniciales 
estaban más o menos cerca de la situación 
de equilibrio compatible con la descarga 
sólida y líquida impuesta para la pendiente 
dada del lecho. Una vez que el lecho estaba 
reconfigurado, se formaban barras libres en 
forma espontánea. Para el caso de los 
ensayos MNE el lecho tendía siempre a 
erosionarse y a formar barras libres en 

a) 

b) 
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forma espontánea, aunque presentaban un 
carácter más convectivo; se formaban, 
evolucionaban mientras migraban aguas 
abajo, y luego decrecían (Figura 0.8). En 
todos los casos el canal siguió 
ensanchándose a una tasa de cambio menor 
que 1% por hora (Figura 0.9), manteniendo 
la geometría recta sin llegar a volverse 
meandriforme en los tiempos ensayados 
(Figura 0.10). 

 

 
Figura 0.7 Elevación del lecho para márgenes no 
erosionables y erosionables. 

 

 

Figura 0.8 Dispersión de longitud de onda. 
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Figura 0.9 Variación de las márgenes con el 
tiempo. 

 

 
Figura 0.10 Evolución de las barras en el tiempo. 
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CHAPTER 1  On the river regime theory and the scaling 

argument concept 

 

 

 

 

1.1 Introduction 

Alluvial streams (rivers) are dynamic landforms subject to rapid change in channel shape 

and flow pattern. Water and sediment discharges are the principal determinants of the 

dimensions of a stream channel (width, depth, and meander wavelength and gradient). 

Physical characteristics of stream channels, such as width/depth ratio and sinuosity, and types 

of pattern (braided, meandering, straight) are significantly affected by changes in flow rate 

and sediment discharge, and by the type of sediment load in terms of the ratio of suspended to 

bed load. The pattern and degree of development of active bars are good indicators of 

sediment load. 

On one hand, changes in stream morphology within a few years indicate changes in water 

and/or sediment discharge (Arnel, 1996; Knighton, 1998). For example, increases in width 

indicate an increase in discharge and/or an increase in coarse sediment load, and decreases 

indicate the opposite. Short-term changes may be in response to a specific flood event, whilst 

longer-term changes over a sequence of events may reflect fundamental alterations in 

discharge and/or sediment load. 

On the other hand, the incident of climate variation over the rivers hydrology regime and 

onto their subsequent morphology evolution is a complex problem that has being addressed 

just recently by many researchers (Arnel, 1996; Thorne et al.; 1997, Knighton, 1998). As 
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pointed out by Mackling and Lewin (1997), changes in the frequency of severe floods and 

droughts during the Holocene (the current geological epoch) would appear to be the clearest 

manifestation of climate control of river systems. Indeed, the possible link between climate 

change and river morphology evolution is still a puzzling issue facing the river engineer at the 

present time, particularly because it is often extremely hard to distinguish between natural and 

anthropogenic causes of river instability and evolution. 

The time scales which usually concern the river engineer span only years and decades. 

According to Werrity (1997), “the major controls governing the behaviour of the river system 

at these time scales are sediment supply and flow regime (from immediately upstream), 

channel and valley morphology (especially gradient), and the nature and volume of sediment 

supplied to the river from the adjacent slopes and undercuts banks.” In other words, when an 

alluvial channel conveys sediment laden water, both bed and banks may either scour or fill, 

changing depth, slope and width until a state of balance is attained at which the channel is 

said to be in equilibrium or in regime (Kennedy, 1895; Lindley, 1919; Lacey, 1929 and 1930). 

Therefore, a river system has three degrees of freedom, and the problem is to establish 

relationships that determine the state of balance among channel width, depth and slope (White 

et al., 1981). Of course, within a scenario of changing river hydrology triggered by global 

change some of these concepts deserve a closer look (Lewin et al., 1988). Nonetheless, the 

implications of climate variation over a river hydrology regime and onto its morphology 

evolution are not of this thesis concern. 

Even though sediment supply and flow regime control the channel stability over a period 

of years or decades, there are many subtle processes taking place within a sandy alluvial 

channel that reflects a state of dynamical equilibrium rather than stationary. Those are the 

migration of dunes and sand bars, which in turn modify the hydraulic resistance of the stream 

flow and consequently the equilibrium water depth for a given discharge and slope. The 
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practical relevance of these morphodynamical features is evident. Whereas small scale 

features such as ripples, mega-ripples and even dunes act essentially as large roughness 

elements which add resistance to the flow, large scale features such as sand bars are one of the 

major factors in controlling the intensity of riverbanks erosion processes, and with it, in 

regulating the river meandering behaviour (Blondeaux and Seminara, 1985). Additionally, the 

role of turbulence on sediment transport and morphologic processes in sandy-bed rivers has 

been widely recognized through numerous studies (Clifford et al., 1993; McLean et al., 1994; 

Mutlu Sumer et al., 2003). Coherent turbulent flow structures such as the ejection- and 

sweep-like structures are ubiquitous in natural flows (Nezu and Nakagawa, 1993) and 

extremely difficult to spot with field observations. Moreover, the acquired knowledge on 

turbulent processes is usually based on data collected at small temporal and spatial scales. In 

the time domain, measurement records of turbulence rarely exceed a few minutes which limits 

the possibilities to look for the interactions between scales of fluid motion and for large scales 

flow structures that may be linked to morphological features in rivers. In the spatial domain, 

the impact of morphology on turbulent processes is often simplified to a local boundary 

condition and rarely the impact of large morphological units is considered. There is an 

obvious gap between the small turbulent scales and the large scales of the flow structure 

that in turn may induce typical morphological scales (Figure 1.1). This thesis was an 

attempt to address this issue, albeit partly bounded by the experimental facilities used along 

the study. Whereas the initial part of this thesis concentrated on the turbulent scales of a broad 

shallow turbulent flow, using the experimental basin available at FICH, the second part of the 

study analyzed the formation and evolution of large scale features, known as free-bars, using 

the sand box facility of the School of Civil Engineering and Geosciences at the University of 

Newcastle (UK). 
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Figure 1.1 Spatial scales L/H for the Paraná River (from Tassi, 2001) 

1.2. Scaling Argument 

The scaling argument should not be underestimated. Once the scales are known, the 

engineer or scientist may restrict the analysis to few essential scales, avoiding the challenging 

problem of constructing a model that can be used to all scales (see Figure 1.1). These scales 

may be dictated by the data collection method, availability of prior information, and/or goals 
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of the analysis. Indeed, morphological problems involving spatial scales are sufficiently 

common to justify the trade-off between the use of comparatively simple models and analysis 

strategy with the formidable task of obtaining models valid at all scales. The following are 

examples: 

Example 1: Typical spatial scales of the Paraná River: The Paraná River drains a basin of 

2.3x106 Km2 with a mean discharge of about 18,000m3/s, and exhibits a complex behaviour 

that shifts from near meandering in short reaches to braided channels (Amsler et al., 2005). 

The Paraná is indeed a low gradient river flowing through a wide floodplain. Its main channel 

is a succession of enlargements with narrower, shorter and deeper sectors between them 

(Amsler and Ramonell, 2002). Average main channel widths (without island widths) are 2000 

– 3000m with a mean depth of 5-8 m at enlargements, and 600 – 1200 m with a mean depth 

of 15-25 m at constrictions. According to Ramonell et al., (2002), along the main channel of 

the river patterns of sand bars and islands concentrate at enlargements, and consequently, the 

river may be classified as a “bed load channel” with transitional planform characteristics, i.e., 

braided with sinuous or meandering thalweg pattern (pattern-type 4 of Schumm, 1985). The 

annual mean total sediment transport of the river amounts to 145x106 t/year. Some of these 

scales were used to construct Figure 1.1 (Table 1.1 ), where the scale spectrum was made 

dimensionless against a mean water depth 10H m≈ . 

Event / River features Scale L [m] L/H 

Flood wave 106 105 
Floodplain width 105 104 
Meanders, 104 102 
Dunes 102 10 
Depth 10 10-1 
Ripples / Fish 10-1 10-2 
Capillary waves 10-3 10-4 
Sediments 10-4 10-5 

Kolmogorov Length Scales, 
1/ 43 ν

=  ε 
ℓ  10-4 10-5 

Table 1.1 Estimate of length scales found in the Paraná River (see Figure 1.1) 
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Example 2: Length scales of a drainage basin: Montgomery and Dietrich (1992) found a 

simple relationship between the length L of a drainage basin and its area A given by  

( ) 2/13AL =  (1.1) 

Shown on Figure 1.2 are data from over 200 river basins of the world. The implication is 

that there is universal similarity in the plan shape of drainage basins, each of which displays 

an average width that is about 1/3 its length (Dade, 2001) 

 
Figure 1.2 River basin length L as a function of basin area A (taken from Dade, 2001) 

Example 3: Universal scaling for alluvial rivers: Parker (2007) recently utilized the 

following scaling,  

1/5

2 /5

bf

bf

g H
H

Q
=ɶ  (1.2) 

1/ 5

2/ 5

bf

bf

g B
B

Q
=ɶ  (1.3) 

2
ˆ bfQ
Q

gDD
=  (1.4) 

RD

SH bf

bf =*τ , Shields number (1.5) 
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Re p

RgDD

ν
= , Particle Reynolds number (1.6) 

Consequently, 

2 /5
1/5bf bf

H
H Q

g
=
ɶ

 (1.7) 

2 /5
1/5bf bf

H
B Q

g
=
ɶ

 (1.8) 

2 ˆ
bfQ gDD Q=  (1.9) 

where , ,bf bf bfQ B H  are the bankfull discharge (m3/s), width (m) and depth (m), respectively, S 

is the bed slope, D is the surface geometric mean or median grain size (m); g the gravitational 

acceleration (m2/s); R is the submerged specific gravity of sediment 1.65, and ν is the 

kinematic viscosity of water (m2/s). Employing data from rivers all over the world are plotted, 

the following diagram is obtained: 

 
Figure 1.3 Universal scaling for rivers according to Parker (2007). 
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These data represent gravel bed streams (in red in Figure 1.3), sand bed streams (in blue), 

and a small number of streams with grain size between 2 and 15 mm. It can be seen a fairly 

coherent universal scaling exits for those streams, pointing out that channel width and water 

depth go with the 2/5 power of bankfull discharge. 

Example 4: Balance between inertia and gravity in shallow flows: Carrasco and Vionnet 

(2004) stated that inertia and gravity are in balance in distances of the order of 

0

FC

H
L ≅ . (1.10) 

This result can indeed be established by simple scaling arguments, i.e., assuming known 

scales that supposedly weight the different terms present in the stationary form of the depth-

averaged equations of motion (Saint Venant Equations) 

( )
2

F

0

C
O

d
UHB

dX

dU dH U
U g gS

dX dX H

=

+ = −

, (1.11) 

where U, H, and B are mean flow velocity in streamwise direction, water depth, and channel 

width, respectively, g is acceleration of gravity, S0 and X are the bed slope and the horizontal 

coordinate, both measured along the streamwise direction, and CF is the bed resistance 

coefficient that can be evaluated with the Keulegan relationship (Keulegan, 1938). Scaling 

amounts to nondimensionalizing so that the relative magnitude of each term is indicated by a 

dimensionless factor preceding that term. If U0, H0, and L represent scales of flow velocity, 

water depth, and distance –over which U undergoes a significant change in magnitude– it is 

clear that inertia and friction are in balance if 

0

2
0F

2
0 C

H

U

L

U
≅ , (1.12) 

and (1.10) follows. This balance can be proved with the aid of the following exact solution to 

the equations of motion (see Appendix A for details) 
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( ) 0F /C22
00

0

21
)( HX

eUU
U

XU −δ+δ+= , (1.13) 

where 0 0 0δ /U U U= ∆  represents a relative sudden departure in the velocity field at the inlet 

0x =  with respect to the normal flow solution U0, given by 

2/1

F

00
0 C 








=

SHg
U . (1.14) 

This solution is examined in detail in Appendix A, concluding that Eq.(1.10) holds true. 

Example 5: Flow instabilities: known examples that reflect the competing mechanism 

between inertia and friction can be seen in the following pictures (Figure 1.4), where the 

observed flow instabilities are triggered by the existence of a high localized flow resistance. 

These flow cases constitute examples of what are known as two-dimensional coherent 

structures (2DCS), after Jirka (2001). 

An adaptation of Hussain’s (1983) definition for general (three-dimensional) coherent 

structures are the 2DCS, defined as “connected, large-scale turbulent fluid masses that extend 

uniformly over the full water depth and contain a phase-correlated vorticity, with the 

exception of a thin near-bottom boundary layer”. 

The 2DCS are visually the most striking aspect of shallow flows. They have, like all 

vertical elements, a whole life cycle consisting of generation, growth and decay. The vorticity 

contained in 2DCS emanates from the initial transverse shear that has been imparted on these 

flows during their generation. Jirka (2001) has defined three types of generating mechanism 

for 2DCS, listed in order of their strength:  

i. Type A; Topographical Forcing: This is the strongest generation mechanism 

in which the shape of the obstacles placed in the flow or topographic features (islands, 

headlands, jetties, groins, etc.) lead to local flow separation in form of detachment of 

the boundary layer that has formed along the body periphery. This detached flow 

forms an intense transverse shear layer, triggering spatially growing instabilities. 
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Examples of shallow wakes are a) the wake within the convective cloud layer (with its 

cellular structure), b) a wake produced on a shallow water table. Chen and Jirka 

(1995) have observed that the range of shallow vortex-street wakes with an oscillating 

separation in the near-wake is given by small values of the shallow wake stability 

parameter / 2fS C D H= ≤ , in which fC  is a quadratic law factor defined by the 

bottom stress formulation, 2/2UC fB ρ=τ , in which ρ is the fluid density, and D is the 

body diameter. Thus, S represents a combination of the kinematic ( )/D H  and 

dynamic ( )fC  effects due to shallowness. The topographical forcing mixing layer 

appears in groin fields along rivers that are used to fix the navigational channel and to 

provide sufficient water depth in low flow periods. Lateral momentum and mass 

exchange between the main stream and the dead-water zones in the groin fields is a 

key element for accurate predictive models for flow and pollutant transport in such 

regulated rivers. 

ii. Type B: Internal Transverse Shear Instabilities: Velocity variations in the 

transverse directions that exist in the shallow flow domain give rise to a gradual 

spatial growth of 2DCS. Such lateral velocity variations can be imposed by a number 

of causes: due to source flows representing fluxes of momentum excess or deficit 

(shallow jets, shallow mixing layers, shallow wakes) or due to gradual topography 

changes or roughness distributions (e.g. flow in compound channels). Shallow mixing 

layers with 2DCS arising from velocity differences between adjacent fluid streams are: 

a laboratory simulation of the confluence of two streams, b) the meridional current 

bands in the atmosphere of Jupiter. 
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Figure 1.4 Upper left corner: flow instability on a shallow flow (wake of a grounded tank ship, taken from 
Milton Van Dyke Album (Van Dyke, 1982). Upper right corner: same type of instability induced by highly 
localized friction due to the bridge pier. Lower left corner: sketch of the expected instabilities along the main 
channel-floodplain interface (Shiono and Knight, 1991). Lower right corner: observed instabilities along a main 
channel-floodplain interface (Sellin, 1964). 

 
iii. Type C: Secondary Instabilities of Base Flow: this is the weakest type of 

generating mechanism and experimental evidence is still limited. As remarked earlier, 

the base flow is a uniform wide channel flow that is vertically sheared and contains a 

3-D turbulence structure also with coherent features, i.e. the well-known 3-D burst 

events, controlled by the bottom boundary layer. The flow is in a nominal equilibrium 

state between turbulence production and dissipation. Imbalances in this equilibrium 

flow process may lead to a wholesale redistribution of the momentum exchange 

processes at the bottom boundary, including as an extreme case separation of the 

bottom boundary layer. The distortion of the vortex lines caused by these flow 
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imbalances lead ultimately to 2DCS. Contributing factor may be localized roughness 

zones or geometrical elements (underwater obstacles). 

Whenever dealing with these generating mechanism (especially Types A and B) it must be 

recognized that the generation of 2DCS always necessitates some travel time or convective 

distance from the origin of generation. 

Growth of 2DCS: the distribution of turbulent kinetic energy over different scales of the 

two-dimensional eddies is governed by the “two-dimensional turbulence” theory of 

Kraichman (1967), which states the possibility of an inverse energy transfer from smaller to 

larger scales. This is contrary to what happens in three-dimensional turbulence, where kinetic 

energy is primarily dissipated at small scales (high wavenumbers) and energy will thus be 

transferred from larger scales (small wavenumbers) to the smaller ones to make up for this 

loss. 

Decay of 2DCS: the major mechanism that leads to the final decay of 2DCS in shallow 

turbulent flows is the bottom friction. If the rate of decay of the total kinetic energy, K(T), is 

equal to the dissipation rate, ε( )T , )(/ TdTdK ε−= , where T is the time, it can be inferred 

that for large eddies with typical velocity U and size L, their kinetic energy and turnover time 

are proportional to 2U  and /L U , respectively. It follows that their rate of kinetic energy 

decay is ( )2/ / /K T U L U∆ ∆ ∼ , which yields 3 /U Lε ∼  (usually referred as the first law of 

turbulence), whereas the rate of energy dissipation by bottom friction per unit mass is 

proportional to 2 2/ /B BUL HL U Hτ ρ = τ ρ . Equating both expressions, the estimate / FL H C∼  

is obtained for the maximum allowable size of any eddy in a shallow turbulent flow (Jirka and 

Uijttewaal, 2004), as long as the bottom friction is computed with the quadratic friction law, 

2
FC UB ρ=τ  (1.15) 

(note the factor 2 stemmed from Jirka’s Cf and the current CF). This balance between 

dissipation rates represents a gradual decay process, unless the 2DCS are maintained by a 
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consistent shear mechanism (see Figure above). Typically, FC 0.005≈  (in the field) to 0.01 

(in the lab), yielding a relative size estimate [ ]( )max / 100, 200L H ≈ Ο  for the 2DCS. 

Example 6: Scales for river meandering: Edwards and Smith (2002) claims that the decay 

length F/ CH , i.e. Eq.(1.10), sets the scale for river meandering in their review of the 

acclaimed Ikeda, Parker and Sawai river meandering model (Ikeda et al., 1981). This 

argument is rather subtle and arises from analyzing the competition between the so-called 

“Bernoulli shear”, which is attributed to differential flow acceleration along the cross-section 

triggered by the uneven cross-stream surface elevation, –or lateral pressure gradient–, and the 

secondary flow cell established in the plane perpendicular to the downstream direction. Using 

simple scaling argument Edwards and Smith (2002) states that if H0 and U0 represent the 

normal flow solution (1.14) of a straightened river, the channel flow velocity and water depth 

of its meandering version should go with 

3/1
0

3/1
0 , ii SHHSUU == − , (1.16) 

where 62/ 0 −≈= LLSi  is the river sinuosity factor, where again, L is estimated to be of the 

order given by (1.10). The above result states that whenever the sinuosity of a river increases, 

its flow speed is lowered and depth is increased, and accordingly, augmenting the likelihood 

of flooding. 

Example 7: Bedforms, and the dual problem of predicting flow resistance and sediment 

transport: When a flow is confined by boundaries composed of loose sediment, the 

continuous interaction between flow and boundaries mould the geometry of the channel and, 

consequently, determine the hydraulic resistance. To make things even more complicated, the 

rate of sediment transport, which is another quantity of fundamental interest, depends to a 

large extent of the hydraulic resistance developed by the bed configuration. Depending on the 

sediment and the flow parameters, the flow-bed interaction in straight channels with non-

cohesive material give rise to an extraordinary variety of forms, which may occur on a 
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‘microscale’ (of the order of the sediment size), on a ‘macroscale’ (of the order of flow 

depth), or on a ‘megascale’ (of the order of the channel width). In turn, these modes of 

interaction not only represent different modes of sediment transport, but also different 

mechanisms of bed resistance (Figure 1.5). In the words of Engelund and Fredsoe (1981), “the 

sediment transport creates ripples, dunes, and bars, which in turn are responsible for a major 

part of the hydraulic resistance. Hence, a change of sediment transport rate will usually 

change the resistance, and vice versa”.  

 

Figure 1.5 Scales of flow resistance in alluvial channels (taken from Dietrich and Whiting (1989)) 

A complementary overview of bedforms dynamics in sand-bed streams was presented by 

Engelund and Fredsoe (1981) by plotting the outcome of a hypothetical experiment where the 

flume discharge is gradually increased, as shown in Figure 1.5. The ordinate is the total bed 

shear stress τB and the abscissa is the mean flow velocity U. In the case of fixed bed, the 

relation between τB and U would be the second-order curved given by the dotted line in 

Figure 1.6, corresponding to Eq.(1.15), which defines the skin friction factor CF. The 

formation of ripples and dunes clearly implies a considerable increase in the hydraulic 

resistance. On the other hand, plane bed, standing waves, and weak antidunes (Figure 1.6) 

bring the resistance back to skin friction only. 
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Figure 1.6 Relation between total bed shear stress oτ  and flow velocity V for different bed forms (Taken from 

Engelund and Fredsoe, 1981). 

 

 

Figure 1.7 Bed Forms in Alluvial Channels (after Chow (1973)). 
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The current thinking in Fluvial Engineering is to split the total bed resistance in two 

components, the skin friction component Bτ′ , and the form drag component Bτ′′  due to the 

dissipation induced by the presence of bedforms (Figure 1.7). Under the hypothesis of acting 

skin friction only, the mean velocity U can be approximated by boundary layer theory, and 

consequently be given by (Keulegan, 1938) 









+=

′
sK

H

U

U
ln5.26

*

, (1.17) 

where Ks is the bed roughness, usually set as 50kn D  for 2 3kn≤ ≤ , with D50 the mean grain 

size, and 

FgHSU =′*  (1.18) 

is the shear velocity attributed to skin friction only, where SF is the energy gradient (for 

stationary and uniform flow, o FS S= ). Van Rijn (1984) later introduced a modification to 

include bedform resistance in the roughness parameter Ks. 

The point here is the need to emphasize that changing flow resistance represents indeed 

different spatial scales (Figure 1.5 and Figure 1.6 are two heads of the same coin), which in 

turn, gives rise to different modes of sediment transport. 

1.3. On turbulent flows 

Recent progress in turbulence modelling such as large eddy simulation (LES) and direct 

numerical simulation (DNS) has enable the simulation of 3D turbulent flows with high 

accuracy. Zedler and Street (2001), using DNS captured the flow turbulent structure over a 

ripple covered bed. However, its cost in terms of computational requirements is still 

prohibited if practical applications are to be addressed (ASCE Forum 2000). Consequently, 

physically grounded turbulence modelling is still required to simulate large-scale river 

morphodynamic processes such as those depicted in Figure 1.4. At large scales, however, the 
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shallow water equations (SWE) are known to capture quite accurately the salient features –in 

an average sense– of open channel flows. The SWE are derived by simplifying the 

hydrodynamics in the vertical direction instead of using the full three-dimensional Navier 

Stokes or Euler equations. As such, the SWE are obtained by assuming a hydrostatic pressure 

distribution and a uniform velocity profile across the water layer, resulting in a two 

dimensional problem where the primary variables are the vertical averages of the horizontal 

fluid velocities and the fluid depth (Tassi, 2007). The SWE are often used to model advection-

dominated open channel flows, river and lake hydrodynamics, floodplain flows, estuarine and 

coastal circulation as well as long wave run-up and hydraulic bores, among other problems of 

interest within the engineering community (Vreugdenhil, 1994). 

Shallow flows are bounded, layered turbulent flows in a domain for which two dimensions, 

namely the dimension of the direction of the flow as well as one transverse dimension, greatly 

exceed the third dimension (Jirka and Uijttewaal, 2004). Shallow flows are characterized by 

(first kinematic condition for shallow flows) 

1<<
L

H
, (1.19) 

where L is the typical horizontal (transverse) length scale and H is the scale of a 

predominantly horizontal flow that occurs in a vertically limited layer whose depth may vary 

with horizontal position. A second, dynamic requirement for shallow flows is that at least one 

boundary must be shear-supporting (e.g. the air-water interface) while the other may be 

largely shear-free (e.g. the air-water interface in channel flow) or is also shear-supporting, and 

that the shear flow is fully turbulent (measured whenever the Reynolds number, Re /UH= ν , 

with ν the kinematic viscosity of the fluid, is above several hundreds) 

A shallow turbulent flow is extremely susceptible to various kinds of disturbances, 

undergoing transverse oscillations that grow into large-scale coherent motions, as a good 

number of observations and analysis had shown (Jirka and Uijttewaal, 2004). An arbitrary 
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transversely sheared profile ( ),u x y  can trigger instabilities characterized by vertical 

elements of length scale l2D that are much larger than the depth, 1/2 >>Hl D . The structure of 

these turbulent motions is largely “two-dimensional” with vertically aligned vorticity vectors. 

In summary, the following characterization emerges: “shallow flows are largely 

unidirectional, turbulent shear flows driven by a piezometric gradient and occurring in a 

confined layer of depth H. This confinement leads to a separation of turbulent motions 

between small scale three-dimensional turbulence, 3 / 1D H ≤ℓ , and large scale two-

dimensional turbulent motions, 2 / 1D H >>ℓ , with some mutual interaction” (Jirka and 

Uijttewaal, 2004) 

Nadaoka and Yagi (1998) schematized the essential features of turbulence in shallow flows 

following ideas set forth before by other researches, notably Dracos et al., (1992). The 

spectral structure of a shallow turbulent flow, as conceptualized by Nadaoka and Yagi (1998), 

is depicted in Figure 1.8. However, they failed to produce experimental data to support the 

concept. Moreover, their claim of the inverse cascading of energy from small scales towards 

large scales is not necessarily correct, as shown next. 

The Navier-Stokes equations for 2D turbulence, with flow velocity u ( )1 2, ,0u u= and 

vorticity ω ),0,0( ω=  provide the evolution model for the mean square of the kinetic energy 

( >< 2
u ) and vorticity ( >ω< 2 ) 

>ω∇<ν−=
>ω<

>ω<ν−=
>< 2

2
2

2

2,2
dt

d

dt

d u
. (1.20) 

There are two integral of motion in the limit ν → 0 (closure problem in 2D turbulence, 

according to Batchelor (1969)). Kraichman (1967) showed that in the case of forced 

turbulence at rate ∈ and enstrophy transfer rate ( )2 /d dtβ = < ω > , there are two well 

distinguished cascades of energy transfer in the inertial range 
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Since the kinetic energy flux through the enstrophy cascade is zero, the kinetic energy 

produced at rate ∈  at ki can only cascade backwards, toward scales larger than 1/ki. 

Schematically,  
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Figure 1.8 Inverse cascading in the inertial range of 2D turbulence 

1.4. Dissertation outline 

 

As was mentioned before, the impact of morphology on turbulent processes is often 

simplified to a local boundary condition and rarely the impact of large morphological units is 

considered. There is an obvious gap between the small turbulent scales and the large 

scales of the flow structure that in turn may induce typical morphological scales. This 

thesis in an attempt to bridge in part the gap, seeking a deeper understanding of which and 

how some typical length scales characterizes the behaviour of a shallow turbulent flow. In 

spite of some limitations imposed by the available laboratory equipment and facilities, the 

emphasis of this work was put to detect the role of bed friction on the formation of 2DCS in 

shallow turbulent flows. The role of bed friction in shallow turbulent flows was vividly 

/3 

E (k) 
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depicted by the aforementioned examples, which is contrary to the belief of Nadaoka and 

Yagi (1998), who restrict the role of bed friction to be source of small-scale 3D turbulence 

only. It is certainly true that a rough boundary generates vorticity on a broad band of high 

wavenumbers, which is later diffused into the flow. However, an issue to address is to 

determine if the overall bed resistance, once in balance with inertia for example, triggers the 

formation of distinguishable 2DCS. There is ample evidence that the types of 2DCS described 

so far represent a length scale well-resolved by the shallow water theory (Lloyd and Stansby, 

1997) 

This thesis compiles the experimental findings obtained in two different laboratory 

settings, with all their limitations in equipment and facilities. Whereas the spectral response of 

a contracting shallow turbulent flow was analyzed through experiments performed at FICH’s 

facilities, the formation and evolution of large free bars was studied with the aid of the large 

sand box facility available at the School of Geosciences at the University of Newcastle (UK). 

Conceptually, the free bars can be considered a sort of 2DCS of the evolving bed fed by the 

interacting turbulent flow and the sediment transport along the erodable bed. 

The content of this thesis is as follows: first of all, the state of the art of shallow turbulent 

flows is critically reviewed in Chapter 2 from the perspective of the turbulent scales that 

typifies an open flow, either imposed by geometry or developed internally by the flow itself. 

This is followed by an in depth literature review on the formation an evolution of free bars. In 

Chapter 3, the spectral segregation between 2D and 3D turbulent scales of a broad shallow 

turbulent flow, developed as the flow approaches a lateral contraction, is presented. For this 

study, the large basin facility available at FICH was used. Then, experimental study on the 

formation and evolution of free bars is presented in Chapter 4. Finally, conclusions and 

recommendations are discussed in Chapter 5. The Appendixes found at the end compiled 

supplemental material that was used along the development of the work. 
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CHAPTER 2 Literature review  

 

 

 

 

2.1 On 2D coherent turbulent structures 

Many engineers and scientists when studying the dynamical behaviour of water bodies use 

the mathematical model based on the shallow water approximation, valid whenever the depth 

h of the water layer is small compared to the length extent l of the wavelike motion of the 

fluid. Indeed, there are many engineering problems involving water motion that can be treated 

as shallow turbulent flows, where in addition to the shallowness condition / 1h l << , the fully 

developed turbulence condition is achieved if the Reynolds number Re /Uh ν=  of the flow 

goes beyond a few hundred. Here, U is a characteristic velocity, typically the free-stream 

velocity, and ν is the fluid kinematic viscosity. The flow in compound channel systems, 

coastal waters, shallow lakes, and in the lower layers of the atmosphere are just few examples 

of turbulent flows that can be analysed with the shallow water assumption, also known as the 

long-wave approximation. However, 3D effects can sometimes hamper not only the versatility 

but also the validity of the 2D shallow water approximation. A case in point is given by the 

flow approaching the opening of a relief bridge located on a flat floodplain of a very low-

gradient, large river. 

The hypothesis of separation of scales in shallow turbulent flows was postulated by 

Nadaoka and Yagi (1998), among others, in their numerical study on compound channel 

flows. However, they provide no experimental evidence to support the idea.  

Indeed, the coexistence of 2D with 3D turbulence structures, and the possibility of treating 

them in a separated manner may have profound influences in the numerical modelling of 



 22 

shallow turbulent flows, as vividly suggested by Nadaoka and Yagi (1998) themselves. In 

others words, a 3D numerical simulation of all the significant structures of a turbulent flow 

could be costly prohibitive (Shi et al., 1999; Zedler and Street, 2001), if not impossible even 

with today’s computers, while using the 2D depth-averaged shallow water equations could 

provide almost the same information at much lower cost (Nadaoka and Yagi, 1998; Bousmar 

and Zech, 2002). This conclusion was reported by Lloyd and Stansby (1997) when comparing 

2D and 3D numerical shallow-water models with experimental data obtained in the wake of 

conical islands. They found that in some cases, the 3D model produced poorer representations 

of the wake features than the 2D model. 

Usually, if the shallow flow is uniform and wide, the 3D structure of turbulence is 

characterized by a streamwise vortex pattern in the plane normal to the local axis of the 

primary flow (Gulliver and Halverson, 1987). In this case, the size of the 3D vortex pattern is 

definitely bounded by the thickness of the water layer. However, some of these shallow 

turbulent flows are readily susceptible to transverse disturbances that may grow into large-

scale instabilities characterized by 2D vortical structures. Examples of these large-scale 

turbulent structures characterized by coherent eddies of Kelvin-Helmholtz type, and called 2D 

coherent structures (2DCS) by Jirka (2001), are encountered in shallow wake flows (typically 

an island wake (Wolanski et al., 1984), shallow jets (Dracos et al., 1992), and compound 

channel flows (Tamai et al., 1986). Consequently, the distribution of turbulent energy in such 

flows has a spatial structure determined by the internal geometry of the flow. These 

observations have led researchers to formulate the hypothesis that turbulent energy is stored in 

two separated structures; while 2D turbulent kinetic energy is stored and transported by large 

horizontal eddies of size l1 much larger than the water depth, 1/ 1h l << , 3D turbulent kinetic 

energy is confined to smaller eddies, whose size l2 is primarily controlled by the length scale 

that bounds the free-surface flow (i.e., water depth; (Gulliver and Halverson, 1987)).  
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In spite of the physical basis of the concept, the existing measurements on the subject are 

not entirely clear with regard to the physical mechanisms underlying the separation between 

2D and 3D turbulent structures in shallow flows. (Dracos et al., 1992) provided some of the 

most conclusive experimental evidence on shallow jets, where an inverse cascade of spectral 

energy that follows the law of “2D turbulence” (Kraichman, 1967) is observed. Jirka (2001) 

has recently reviewed this issue. A distinction should be made here between unstable and 

stable flows. Whereas the aforementioned shear flows constitute the prototype of 

hydrodynamic instabilities commonly found in many open flows, the approaching flow 

problem considered here is not necessarily unstable in the sense of the linear stability theory 

(Drazin and Reid, 1981). Indeed, for transversely sheared flows, namely shallow wakes, 

shallow jets, and compound channel flows (also known as the shallow mixing layer), the 

larger, resolvable coarse scale that characterizes the 2DCS is linearly unstable to small 

perturbations and is governed by a modified version of the Orr-Sommerfeld equation. This 

issue was established by Chen and Jirka (1998) for shallow jets, by Chen and Jirka (1997) for 

shallow wakes and by Ghidaoui and Kolyshkin (1999) for compound channel flows, among 

many other contributors to the subject. Conversely, in the approaching flow problem 

considered here, there are neither topographic nor velocity discontinuities that may act as 

forcing mechanisms to trigger the onset and growth of 2DCS, except downstream of the 

contraction. So, it is natural to ask if only transversely sheared flows are likely to exhibit the 

segregation between vertical (small) scales and horizontal (large) scales. Moreover, the 

discharge to the floodplain downstream of narrow bridges could behave as a jet when looking 

at from the far field (Dracos et al., 1992). Thus, the hypothetical formation of 2DCS 

downstream of the opening could have considerable impact into the subsequent floodplain 

evolution. 
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2.2 On free bars formation 

 
Numerous classifications of bed forms have been proposed. A general description is 

summarized in Table 2.1. Some authors generally classified bed forms according to their 

shape and position. These types of forms, composed of a wide range of grain sizes, are usually 

exposed at certain stages of flow. At first the more general bedforms classification existing in 

the literature will be cover, mainly concern about dunes, and later followed by alternate bars. 

The most widely used sequenced of bed forms commonly associated with sand-bed 

streams are ripples, dunes, plane bed and antidunes, see Figure 1.7. Due to their links with 

sediment transport and flow resistance, considerable effort has been invested in the study of 

this sequence, particularly in laboratory flumes. The formation of these various bed features 

indicates the presence of systematic tendencies in the ability of natural streams to sort and 

transport material over a wide range of flow and bed material conditions. 

Many authors suggest that the bed forms are the effect of instability at the water-sediment 

interface. The deformation of an initially flat bed may lead to concentrations of grains, which 

move intermittently when shear stresses are just above the movement threshold. These small 

disturbances will, under certain conditions, influence the flow and local sediment transport 

rate in such a way that scour and deposition occur in the troughs and over the crest 

respectively, thereby increasing the amplitude of the initial bed undulations. Such an 

increment disturbs the local transport rate still further, promoting additional growth through a 

positive feedback until a limit is reached and ‘equilibrium amplitude’ attained. 

There have been some attempts to classify the bedforms generated under a given flow 

condition using (kinematics) instability analysis (Kennedy, 1963; Engelund, 1970). The 

instability analysis indicates the conditions at which an initial perturbation of the bed will 

grow, but it does not give information on the equilibrium dimension of the bedform. The most 
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reliable classification of bed form types is based on the analysis of bed forms as observed in 

flume ad field conditions. 

Bed form  Dimension Shape Behaviour and occurrence 

Bar 

Lengths 
comparable 
to channel 
width 

Variable 

Five mean types: 
1. Point bars: Form particularly in the inner banks of meanders. 
2. Alternate bars: distributed periodically along one and then the 
other bank of a channel 
3. Channel junction bars: develop where tributaries enter the 
main channel. 
4. Transverse bars (include riffles): may be diagonal to the flow 
5. Mid-channel bars: typical of braided reaches. 

Ripples 
m;

0.04mH
b

<  

Triangular 
profile; 
gentle 
upstream 
slope sharp 
crest and 
steep 
downstream 
face 

Generally restricted to 
sediment finer than 0.6 
mm; discontinuous 
movement; at velocities 
much less than that of 
the flow 

Dunes 

λ 4-8 times 
flow depth, 
Hb up to 1/3 
flow depth; 
much larger 
than ripples 

Similar to 
ripples 

Upstream slope may be 
rippled; discontinuous 
movement; out of phase 
with water surface 

Lower regime of 
roughness; from 
roughness 
dominant 

Plane bed   

Bed surface devoid of 
bed forms; may not 
occur for some ranges 
of depth and bed 
material size 

Antidunes 

Relative low 
height 
dependent 
on flow 
depth and 
velocity 

Sinusoidal 
profile; 
more 
symmetrical 
than dunes 

Less common than 
dunes, occurring in 
steep streams; in phase 
with surface water 
waves; bed form may 
move upstream, 
downstream or remain 
stationary. 

Upper regime of 
roughness; grain 
roughness 
dominant 

Particularly sand-
bed streams 

λ - Bedform wavelength; Hb – bedform height. 

Table 2.1 Classification of bed forms, taken from Knighton (1984). 

Van Rijn (1993), for example, believed that bed forms are relief features initiated by the 

fluid oscillation generated downstream of small local obstacles over a bottom consisting of 

movable (alluvial) sediment materials. He mentions different classification criteria for sand 

beds according to different authors: (i) Engelund (1974) used the Froude number (Figure 1.7); 

(ii) Liu (1957) described the type of bed forms in terms of the suspension parameter 

swu* and the particle-related Reynolds number ν50* du as shown in Figure 2.1, where *u  is 
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the bed shear velocity, sw  the particle fall velocity of bed material, 50d  particle diameter and 

ν  kinematic viscosity coefficient, and (iii) Simons and Richardson (1966) used the stream 

power ,b cuτ  (where ,τb c is the critical shear stress and u  the depth average velocity) and the 

median fall diameter, fd , as shown in Figure 2.2 

 

Figure 2.1 Bedform classification graph of Liu (taken from van Rijn, 1993). 

Finally, (iv) Van Rijn (1984) and van den Berg and van Gelder (1989) used a 

dimensionless bed-shear stress parameter and the dimensionless particle parameter. Van den 

Berg and van Gelder (1989) used the particle mobility parameter ])ρρ[(τθ 50gdsb −′=′ , the 

grain bed shear stress 2)(ρτ Cugb
′=′  and the particle diameter parameters 

)312log(18 90dhC =′  and *D  ( )]ν)1([ 312
50 gsd −  as shown in Figure 2.3 ρ and ρs are the 

water and sediment densities, respectively, g is the acceleration due to gravity, h is the water 

depth and s is the specific gravity of the sediment. 
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Figure 2.2 Bedform classification graph of Simons and Richardson (taken from van Rijn, 1993). 

While van Rijn used the bed shear stress parameter, , ,(τ τ ) τb b c b cT ′= −  and the particle 

diameter parameter to obtain a more specific classification. In this classification, it is possible 

to find asymmetrical dune-type bedforms with a length scale much larger than the water depth 

( L h>> ), observable features for 15T < . As well as, mega ripples, which are ripples with a 

length scale of the order of the water depth ( L h≈ ), and mini-ripples, that have a length scale 

of the near-bed turbulence length scale ( L h< ), superimposed on the dunes for 3 10T< <  

and 10* ≤D  (Figure 2.4).  

Later, in 1996, Best presented a new attempt to determine bedform existence fields for a 

wide range of particle sizes and shear stresses. In Figure 2.5, the bed features are shown 

related to the Froude Number (Fr) for: the lower stage ( )1Fr < , the upper stage ( )1Fr >  and 

the transition zone (denoted by the dotted line). The dunes are divided into two types, two-

dimensional (2D) and three-dimensional (3D) the latter is just referred to as dunes. The above 

bedforms were observed in steady flow over a mobile bed but, in alluvial streams, the form of 

the bed varies with hydraulic quantities such as water depth, energy slope and sediment size. 
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Therefore, these materials can give a picture of response of channel bed when the variation 

happens in the long term or very gradually. 

 

Figure 2.3 Bedform classification graph of van den Berg and van Gelder (from van Rijn,1993).  

Sand bars are the largest bed form (van Rijn, 1993) –such as alternate bars, side bars, 

braid bars and transverse bars, which usually are generated in areas with relatively large 

transverse flow components (bends, confluences or expansions). Alternate bars are 

characterized by a sequence of steep consecutive diagonal fronts with deep pools at the 

downstream face, and gentler riffles along the upstream face (Figure 2.6), whose horizontal 

scale is typically of the order of several channel widths, while the vertical scale is of the order 

of the flow depth. Braid bars are alluvial “islands” that separate the anabranches of braided 
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streams. Some bars can be observed distributed over cross-sections with a marked streamwise 

elongation, and the flow over them is sinuous (wavy) in plan. They are call transverse bars 

and are diagonal shoals of triangular-shaped plan along the bed with one side attached to it, 

and have a large width-depth ratio. Side bars are the ones connected to river banks in a 

meandering channel with no flow over them and a planform roughly triangular. Special 

examples of this type are point bars and scroll bars. 

 

Figure 2.4 Bedform classification graph of van Rijn (1993). 
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Figure 2.5 Bedform existence field across a range of grain sizes (in Robert, 2003). 

 

 
Figure 2.6 Alternate bars diagram 

Alternate bars, in particular, are frequently observed in rivers, and their formation has 

acquired an increasing importance in highly developed countries where river regulation 

works, such as canalization and artificial straightening motivated by land reclamation 

purposes, leads to their unexpected appearance (Figure 2.7). 
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Figure 2.7 Alternate bars in the Alpine Rhine, Border of Switzerland/Leichtenstein (taken from Jaeggi, 1984) 

 
2.2.1 Bar formation problem: alternate bars as the precursor mechanism for river 

meandering? Linear stability analysis 

Callander (1969) set forth the idea of “dynamic instability”: Under appropriate conditions 

the non-cohesive flat bottom of a turbulent stream flowing in a straight channel loses stability 

leading to a new configuration characterized by infinitesimals growing and migrating 

perturbations, of length scale of the order of the channel width. It turns out that the bottom 

perturbations tend to form an alternating sequence of deep and shallow reaches, as can be 

seen in Figure 2.6, a pattern that can be interpreted as the precursor of river meandering”. 

This concept has appeared in several papers about channels with loose boundaries (Leopold 

and Wolman 1957, Callander 1969). 

This tendency towards instability may be modified by the characteristics of the flow 

resistance. Vanoni and Brooks (1957), Raudkivi (1963) and Kennedy and Brooks (1965) have 

shown that the drag coefficient varies with velocity on an erodible bed. If the bed material is 

fine grained, there may be a range of velocity through which the bed shear stress decreases as 
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the velocity increases. Then, an increase in velocity can, by making the bed less rough, cause 

a further increase (Callander, 1969). 

Callander (1969) applied only two-dimensional flow models assuming that the direction of 

the local sediment transport is parallel to the local velocity vector, and that the sediment 

transport rate is uniquely related to the bed shear stress. Bearing in mind that Callander (1969) 

neglected the velocity variation along verticals and includes the internal friction as one-

dimensional description only, corresponding to gradually varying flow, Engelund and 

Skovgaard (1973) developed a theory taking into account the three-dimensional nature of the 

flow. They extended Callander’s analysis (1969) by introducing a three-dimensional flow 

model which takes account of the helical motion induced by the non-uniform vertical velocity 

distribution in the basic flow, an effect neglected in the previous approaches. Furthermore, 

they introduced the effect of a transverse bed slope on the transportation of the sediment and 

found that this effect is of great significance, because the theory predicts that a river will braid 

into an infinite number of branches if that correction is not included. This suggests that an 

accurate knowledge of the interaction of fluid flow and sediment motion is necessary in order 

to develop an adequate description of the river instability. 

Later, Parker (1976) considered the two-dimensional stability models of Callander (1969) 

using expansion techniques to obtain an analytical description of the sediment transport as a 

necessary condition for the occurrence of fluvial instability. Also he made a differentiation 

between meandering and braided regimes, obtaining relations for the meander wavelength and 

number of braids. Parker (1976) proposed that a theory of alternating bar formation in straight 

rivers is also a theory of the origins of meandering and braiding, based in the following 

statements: i) meandering and braiding rivers generally have a large width-depth ratios; ii) the 

sinuous pattern of banks and bars is due to the emergence of a submerged alternating bar 

pattern on the bed of an otherwise roughly straight river during low flow; iii) these alternating 
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bars occur even in channels with non-erodible banks. Justification of these statements for 

natural river was provided by Kinoshita (1957) and Fanhestock and Maddock (1964). Thus 

Parker (1976) performed an investigation into the cause of fluvial instability by theoretically 

examining submerged bedforms in a shallow channel model treating meandering and braiding 

as different degrees of the same instability phenomenon, highlighting that sediment transport 

is a dynamically necessary condition for the occurrence of instability leading to meandering 

either in flow or in the bed. The analysis of his work indicates that most streams have a 

tendency to form bars even though they are in a graded state. If the slope and the width-depth 

ratio at a formative discharge are sufficiently low, meandering is favoured. If the slope and 

the width-depth are sufficiently high, braiding is favoured. The major disadvantage of 

Parker’s theory (Parker, 1976) is the difficulty of applying it to natural rivers due the fact that 

the channel width at a formative discharge must be known before any of the relations can be 

evaluated. 

Fredsoe (1978) used the same linearized flow model of Engelund and Skovgaard (1973) 

but updated the theory in the following way: i) the linearized equation were solved 

numerically without introducing further approximations; ii) the effect of a transverse slope of 

the bed is accounted for; iii) the total amount of sediment is transported partly as bed load and 

partly in suspension. The fact that for large flow rates a greater part of the sediment load will 

be carried in suspension implies that there can be no unique relationships between the 

transport rate and the bed shear stress. To account for this phenomenon it is necessary to 

introduce a supplementary equation of continuity for the suspended sediment, and to be able 

to estimate the transport rates of the bed load and the suspension separately. 

These analyses outline the conditions for bar formation in the flow and sediment 

parametric space, i.e., the wavelength and wave speed selected by the flow-erodible bed 

system are given by the maximum growth rate of the perturbations. In the theoretical context 
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of all the above contributions, it was tacitly assumed that a sinuous migration thalweg within 

a straight channel should somehow evolve into a sinuous planimetric instability and thus 

leading to meandering. 

Nevertheless, migrating alternate bars exhibit a relatively large migrating speed as 

compared with the speed associated with the bank or lateral erodibility (Struiksma et al., 

1985; Struiksma, 1985). Consequently, the type of perturbations responsible for meandering 

initiation must be somehow steady in order to determine such a slow process as that of bank 

erosion (Seminara and Tubino 1989). 

2.2.2 Bar formation problem: meandering formation as a planimetric instability. 
 

All above analyses were somehow unsatisfactory since the effect of the bank deformation 

was not included. They treat only the deformation of alternate bars between straight, non-

erodible banks; the flow may wind about the bars, but the channel does not meander. In the 

early 1980´s, Ikeda, Parker and Sawai (1981) suggested the idea that meander formation was 

associated with planimetric instability, the disestablishing mechanism being bank erosion 

associated with the secondary flows induced by channel sinuosity. They develop a formal 

stability theory of channels with sinuous banks; describing the bank erosion and considering 

the stability criterion in terms of the growth-rate of lateral bend amplitude. The main 

conclusion of this theory is that for alluvial streams ‘bar’ and ‘bend’ stabilities operate at 

similar wavelengths when sinuosity is not too large. This provided justification for the 

assumption that alternate bars formation eventually leads to a meandering channel with an 

initial wavelength close to that of alternate bars. 

In turn, Olesen (1983) suggested that steady spatially growing ‘bar’ perturbations was a 

more reasonable candidate to explain meander formation. However, Olesen (1983) did not 

explain which mechanism would excite the development of such perturbations that are not 

‘naturally’ growing –their temporal growth rate being zero.  
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Blondeaux and Seminara (1985) introduced a unified approach where the forcing effect of 

channel curvature upon some quasi-nonamplyfying and quasi-nonmigrating ‘bar’ modes 

provided the excitation mechanism for steady spatially periodic perturbations. They employed 

a model for fully developed flow in sinuous channels with small curvatures relaxing the above 

mentioned condition on the meander length. It turns out that under these circumstances, the 

curvature forces a ‘natural’ solution which represents a quasisteady bar perturbation. Thus it 

emerge that ‘bend’ instability does not select the most unstable wavelength of ‘bar’ 

instability, but rather that which is nearest to resonance for any given set of flow parameters. 

The wavelength selected by this bar-bend resonance mechanism was found to be about three 

times as large as those predicted be a traditional ‘bar’ stability theories. 

Later, the flow field model of Ikeda et al., (1981) was rederived by Johannenson and 

Parker (1989) to take into account the convective transport of primary flow momentum by the 

secondary flow. The planimetric evolution equation given in that paper not only confirm the 

resonance phenomena discovered by Blondeaux and Seminara (1985) but also has formed the 

basis of popular meander models such as the one of Howard (1996). 

Attempts to verify experimentally the “resonance theory” (Colombini et al., 1987) were 

successful to some extent but, in particular, the interaction between alternate migrating bars 

and fixed point bars formed in channels bends and the conditions for the suppression of the 

former were studied experimentally by Garcia and Niño (1993).  

Recently, a new set of works tried to relate some other aspects leading to bar formation and 

instability. Lanzoni and Tubino (1999) analysed the influence of grain sorting using a similar 

stability analysis for the grain size distribution proposed by Seminara et al., (1996) to explain 

the formation of bedload sheets, but retaining the full coupling between perturbations of 

bottom topography and grain size distribution. The main output of this analysis implied the 



 36 

decreasing of the growth rate of bar perturbations due to increasing values of the standard 

deviation of the sediment mixture. 

Federici and Seminara (2003) studied the convective instability nature of some persistent 

perturbations observed in flume experiments. Up to now, temporal stability analyses consider 

perturbations that amplify in time, starting from some initial spatially periodic perturbations, 

i.e. they assume that the perturbation wavenumber λ is real while its frequency ω is complex. 

Such analyses allow us to distinguish between stable configurations (all λ decay in time) and 

unstable systems (some λ are amplified). When the nature of the instability is convective a 

spatial stability analysis is applicable, considering perturbations that evolve in space, starting 

from some initial temporal distribution, i.e., assuming that the perturbation wave number is 

complex and the perturbation frequency is real. 

Finally, Hall (2004) tried to determine which types of disturbances were converted into 

instability waves – the receptivity problem. In the existing theory on bar formation little 

attention has been given to the question of what physical mechanism generates a particular 

bar wavelength. The assumption implicitly made is that in a river there are so many sources of 

spatial inhomogeneities that there will always be sufficient forcing at all wavelengths to excite 

the most unstable bar. However in less disturbed environments, e.g., in man-made channels or 

in laboratory experiments, the situation is less clear-cut. In fact, there are a variety of sources 

for the generation of instability waves. The major point to be appreciated is that boundary 

layer instabilities are almost always convective in nature so an instability wave can only be 

generated continuously if there is a disturbance source for all time. In the context of boundary 

layer transition the process by which disturbances are converted into instability waves is 

usually called the receptivity problem; see Ruban (1984), Denier et al. (1991), Asai and 

Nishioka (1993), Duck et al. (1996), Saric et al. (2002) and Hammerton and Kerschen (2005) 

for a discussion of receptivity problem and Görtler instabilities in boundary layers. Hall 
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(2004) shows how spatial variations associated with seepage into the channel; curvature 

variations, local constrictions or other spatial variations can interact with the flow 

unsteadiness to produce bars. In fact he related the amplitude of the bar generated to the 

forcing mechanism through a ‘coupling coefficient’ to determine what kind of spatial 

variations were more or less efficient in the generation of bar. Giving examples of how a dyke 

entering the main channel or indentations made in the banks should be arranged so as to 

minimize or maximize bar formation. 

2.2.3 Bar formation problem: non-linear theories 
 

It is now fairly well established that bar formation can be explained as a result of an 

instability mechanism (Lanzoni, 2000). Critical conditions for bar growth as well as bar 

wavelength and celerity can be easily predicted within a linear framework. However, when 

conditions are far from critical condition, comparison with experimental observations show 

that in general linear theories underpredict bar wavelength whereas bar celerity is 

overpredicted (Blondeaux and Seminara, 1985; Nelson and Smith, 1989; Lanzoni, 2000). This 

discrepancy is possibly due to the strongly nonlinear interactions arising between finite 

amplitude disturbances of different wavelength, which characterized bar development. 

Weakly nonlinear theories (Colombini et al., 1987; Schielen et al., 1993), which have been 

developed in the neighbourhood of critical conditions, cannot account for the above strong 

nonlinearity. While weakly nonlinear theory predicts fairly well the equilibrium bar height 

(Colombini et al., 1987), bar wavelength and celerity predictions are not significantly 

improved. Consequently, linear theories are still preferred to frame the range of physically 

admissible parameter values within unstable condition. In more detail, the analysis of 

Colombini et al., (1987) predicts finite amplitude of the alternate bars in a straight alluvial 

channel for perturbations which grow on a time scale that is large compare to the typical 

period of the waves. The equilibrium amplitude in that equation is also a function of the 
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Shields bottom shear stress, and the sediment size to depth ratio. The result of their two-

timescale analysis was a so-called Landau equation describing the time evolution of the wave 

amplitude. They only considered the case were the wavenumber is fixed in the neighbourhood 

of the critical wavenumber for which instability first occurs. The theory provides a simple 

equation for the equilibrium amplitude of the alternate bars as a function of a small parameter 

ε, defined as ( )ε β β /βc c= − , where β is the ratio between half the width of the channel and the 

depth of flow, and βc is the critical value of β for the formation of alternate bars as obtained 

from the neutral curve. Schielen et al., (1993) argued that considering only the wavenumber 

in the neighbourhood of critical condition was disputable, since in fact all waves in a narrow 

spectrum -centred on the critical value- are unstable. Owing to the dispersion of this wave 

group, modulation will also occur on a spatial scale. If this effect is included in the weakly 

nonlinear theory, a modified amplitude is found which is governed by a Ginzburg-Landau 

equation. Since the group velocity varies with the wave number we may expect this equation 

to describe local convergence and divergence of the perturbation energy, which may cause the 

periodic solutions obtained from the Landau theory to become unstable (Lighthill, 1978). As a 

result bar patterns with a more complex temporal and spatial behaviour may be expected. 

Furthermore, it is possible to determine the stability of its solutions against several 

perturbations (in contrast to the Landau theory, where one can only study the stability of 

periodic solutions against perturbations with exactly the same wave number). Under the bases 

of the Ginzburg-Landau theory, Schielen et al. (1993) investigated the modified behaviour of 

bar patterns. 

On the other hand, some efforts have been devoted in the past to simulate numerically free 

bars evolution, and several mathematical coupled models for flow and bed topography have 

been proposed in the literature (Olesen, 1983; Struiskma, 1985; Nelson and Smith, 1989; 

Shimuzi and Itakura, 1989; Struiskma and Crosato, 1989; Colombini and Tubino, 1991; 
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Mosselman, 1992, 1998; Defina, 2003). Most of these models use a channel-fitted orthogonal 

curvilinear coordinate system, which allows an accurate description of the fully nonlinear bar 

evolution in simple-shaped domains (e.g., straight or meandering channels). Nevertheless, few 

studies have attempted to use these models as a tool for better understanding the fully 

nonlinear evolution of free bars, with the exception of the work of Federici and Seminara 

(2003). Nelson and Smith (1989) simulated the temporal evolution of alternate bars from an 

initially flat bed for two cases experimentally studied by Fujita and Muramoto (1985). They 

formulated both hydrodynamic and sediment budget equations using a channel-fitted 

orthogonal curvilinear coordinate system and obtained a solution by use of a standard finite 

difference technique. The model predicted the generation of trains’ bars downstream of an 

initial disturbance (i.e., a small asymmetric and erodible bump) whose characteristics were 

very similar to those observed experimentally. They also argued that a carefully designed 

two-dimensional model captures the main mechanism governing bar development. Another 

numerical study to investigate the highly nonlinear competition between modes was 

performed by Colombini and Tubino (1991). Using also a channel-fitted orthogonal 

curvilinear coordinate system but solving the hydrodynamic and sediment budget equations 

using a spectral method, they clearly confirmed the crucial importance of strongly nonlinear 

interaction mechanisms in the development processes. More recently, Defina (2003), used a 

two-dimensional finite element model for the morphodynamic evolution of a cohesionless bed 

to test experimental observation of the formation and evolution of free bars. She studied the 

strongly nonlinear interactions governing bar development, focusing on the influence of the 

initial perturbation introduced in the flow field for bar inception. Her research found that the 

type of disturbance plays a role of utmost importance as it can strongly affect both the 

developing process and the equilibrium conditions 



 40 

2.2.4 Bar formation problem: meandering formation as a resonant mechanism 

 
If the overall picture given above is correct, it is then possible to see two different 

phenomena occurring in the process of meander formation in alluvial channels (Colombini et 

al., 1987): a) development of migrating alternate bars (or free bars) without lateral or bank 

erodibility, a relatively fast process compared with the second slower process, i.e., b) 

development of channel sinuosity (forced bars), a relatively slow process triggered by a 

disturbance that contains a non-propagating part either due to curvature effects, i.e., the bar 

resonance mechanism (Blondeaux and Seminara, 1985), or due to flow unsteadiness (Hall, 

2004). 

As it was mentioned, it is now fairly well established that the formation of free bars can be 

explained by a classical normal mode stability analysis performed on the system of 

conservation equations governing the hydrodynamics and sediment transport in channels with 

a cohensionless bed. The ratio of channel width, or half-with B, to water depth H is the crucial 

dimensionless parameter for the instability, though some authors claim that the relative 

roughness parameter, which controls frictional forces play some weaker role (Federici and 

Seminara, 2003). For some given hydraulic conditions, linear stability predicts a sequence of 

increasing critical values of ( )cc HB /=β  above which small-amplitude bar perturbations 

characterized by m rows are amplified. For 1=m , bars give rise to a weakly meandering 

pattern of the thalweg, whereas for 2≥m , a submerged braiding pattern develops. 

The coexistence of free or migrating and forced or fixed bars in a meandering channel has 

been observed in laboratory experiments by Kinoshita and Miwa (1974), Gottlieb (1976) and 

Fujita and Muramoto (1985). However, the most interesting experiment from the point of 

view of interactions between free and forced bars was the one conducted by Kinoshita and 

Miwa (1974). They did an extensive set of experiments in a meandering channel, where the 

channel was modelled as a set of straight segments forming and angle α to each other. Two 
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different regimes where detected depending on the relations of α with a critical value cα  

which was found to be in the range of �20  to �40 , and depends on the meander wavelength. 

2.2.5 Bar formation problem: experimental approach and regime theories 

 
In parallel with theoretical works a variety of methods have been used to empirically 

describe and characterize the formation of alternate bars in open channel flows. Available 

approaches range from equations that predict the regime or graded morphology of equilibrium 

channels to mathematical models that simulate channel changes in time and space. According 

to experimental data (a series of experiments in a water and sediment recirculating flume of 

30m long and 3m wide with smooth, rigid walls of sheet metal and a mobile bed), Chang et 

al., (1971) found that alternate bars usually began to form when the value of width-depth ratio 

reached 12. They observed a slow migrating pattern of alternate bars, as the sediments were 

moving downstream, similar to the movement presented by dunes and ripples. Indicating that 

the dimensionless parameter λ /FS H  is related only to the Froude number of the channel flow, 

where SF is the friction slope. 

Jaeggi (1980) considered that alternate bars are a special form of dunes that occur in 

subcritical flows in Gravel Rivers, assuming that the generating mechanism for alternate bars 

and dunes is basically the same. Therefore the formulation of dunes can be applied to 

alternate bars. The conclusion of his work was to propose an expression for the upper limit of 

bar formation, relating the bedform wavelength )( Dλ  to the meander (plan form) wavelength 

( Mλ ). Later, Jaeggi (1984) conducted a series of experiments in a 25m long and 0.3m wide 

flume filled with natural sands with mean grain sizes of 0.52, 1.8 and 4.0mm and PVC 

granulate of cylindrical shape with mean diameter of 3.0mm. Jaeggi (1984) used this 

experimental data, together Chang et al. (1971) data, to establish a new criterion for alternate 

bar formation and characteristics, suggesting that the upper limit of bar formation is given by 
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and the respective lower limit of alternate bar formation is described by 
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where θc is the critical Shield stress, γ and γs are the specific weight of water and sediment, 

respectively, and S the channel slope. In this method, the channel slope has a minimum 

condition at which alternate bar formation will occur, being: 
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where M is a function of the sediment grading and varies from 0.34 (uniform material) to 0.7 

(widely graded material). Additionally, the method states that the total height of alternate bar 

AB∆  is almost independent of discharge and slope, despite being a slight increase in the total 

height of dunes and antidunes with increases in discharge. The scour depth ∆  is given by: 

( ) 15.0
506

76.0
dB

B
AB =∆=∆ . (2.4) 

At the same time, Olesen (1983), presented a linear perturbation analysis of a horizontal 

two-dimensional mathematical model for the flow and bed topography in straight alluvial 

rivers with dominant bed load. As a result he suggests that the wavelengths of alternate bars 

were 3-4 times the channel width.  

Ikeda (1984) carried out a series experiments in a 15m long, and 0.50 m wide flume. He 

crudely approximated the bar wavelength as B9=λ and suggested a linear relationship 

between the maximum scour depth ∆  and the bar height as follows: 

bH75.0=∆  (2.5) 
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Another criteria for alternate bar formation in straight alluvial channels with smooth rigid 

banks was suggested by Chang (1985), based upon the relative magnitudes of the stable width 

of stream flow, Bs, and the channel width between rigid banks. The general situation is 

divided in three cases: in the first case, the stable width at higher discharge is greater than the 

channel width; as a consequence meanders or alternate bars will not form. In the second case, 

the stable width is less than the channel width; subsequently alternate bars can be considered 

as large-scale bedforms which reflect meandering development in confined channels. Finally, 

the third case, where the stable width is much smaller than the channel width, the consequent 

development of free meanders will result in the disappearance of alternate bars. Therefore, 

alternate bars in straight alluvial channels may develop if the stable width is less than the 

channel width between the rigid banks, 

2sB B<  (2.6) 

where B is half the channel width between rigid banks and Bs is the stable width of alluvial 

channel. He recommended a rational regime expression to calculate the stable width as 

follows: 
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with the discharge Q in litres per second and Bs and d50 in millimetres. 

Furthermore, Yalin and Silva (1991) described the formation of alternate bars on the basis 

of horizontal bursts, which occur in open channel flow. They found that the length of alternate 

bars ( 6L B= ), is the same as the length of horizontal bursts producing them. Proposing 

relationships for separate alternate bars from multiple bars and dunes: 
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Garcia and Niño (1993) performed a series of experiments in two different flumes, one of 

0.9m wide and 20m long, and the other of 1.8x50m, width and length respectively, covered 

with uniform sediment of 0.53mm median size. They utilized one straight channel and three 

meandering with a total length of 25m (approximately 4 wavelengths in the majority of the 

sinuosity cases studied). They used the experimental data to test some specific aspects of the 

developed linear and non-linear theoretical models for the formation, geometrical properties, 

and migration characteristics of alternate bars. Pointing out that the linear theories of free bars 

proposed by Colombini et al. (1987) is fairly successful predicting the wavelength and critical 

conditions for the formation of alternate bars; this was corroborated with the experiments 

performed in the straight channel. However, the wavelength of well developed bars tends to 

be underestimated by the linear theory. They concluded that the closure relationships 

employed in theoretical analysis play a fundamental role in the accuracy of prediction.  

More recently, Babaeyan-Koopaei (1996) performed a set of experiments with self-formed 

conditions and bedforms in equilibrium states. He then applied the above theories and 

equations, which resulted from experiments in flumes with fixed walls, to his experimental 

data and arrive to the conclusion that the published equations for characteristics of alternate 

bars in channels with rigid banks can predict well for those with loose banks. 
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CHAPTER 3  Separation of scales on a broad, shallow turbulent 

flow 

 

 

 

 

3.1 Introduction 

Many engineers and scientists when studying the dynamical behaviour of water bodies use 

the mathematical model based on the shallow water approximation, valid whenever the depth 

h of the water layer is small compared to the length extent l of the wavelike motion of the 

fluid. Indeed, there are many engineering problems involving water motion that can be treated 

as shallow turbulent flows, where in addition to the shallowness condition / 1h l << , the fully 

developed turbulence condition is achieved if the Reynolds number Re /Uh ν=  of the flow 

goes beyond a few hundred. Here, U is a characteristic velocity, typically the free-stream 

velocity, and ν is the fluid kinematic viscosity. The flow in compound channel systems, 

coastal waters, shallow lakes, and in the lower layers of the atmosphere are just few examples 

of turbulent flows that can be analysed with the shallow water assumption, also known as the 

long-wave approximation. However, 3D effects can sometimes hamper not only the versatility 

but also the validity of the 2D shallow water approximation. A case in point is given by the 

flow approaching the opening of a relief bridge located on a flat floodplain of a very low-

gradient, large river (Figure 3.1). Upstream of the relief bridge, the approaching flow is 

laterally unbounded, shallow and1 basically two-dimensional (2D). Then, the approaching 

flow accelerates near the bridge opening triggering scouring processes around the bridge piers 

                                                 
1 This chapter had been published in Journal of Hydraulic Research, 42 (6), 2004. 
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and abutments, with characteristics that are essentially 3D (Schreider et al., 1998; Melville 

and Coleman, 2000). This paper focuses, however, on the mechanisms that eventually 

segregate the 2D and 3D turbulent structures of the broad, shallow turbulent flow that is 

approaching the opening (Figure 3.2), rather than on the scouring process. 

 

 
 

Figure 3.1 Top: Aerial photograph of a portion of the Interstate Road 168 that runs through a large and very 
low-gradient floodplain of the Paraná river. Bottom: same portion of the road. In periods of extremely high 
waters, the average water depth on the floodplain is about 4m (photograph taken during the big flood of 1983, 
flow is from top to bottom). 
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The hypothesis of separation of scales in shallow turbulent flows was postulated by 

Nadaoka and Yagi (1998), among others, in their numerical study on compound channel 

flows. However, they provide no experimental evidence to support the idea.  

 

Figure 3.2 Long exposure photograph of the shallow turbulent flow pattern established on a broad experimental 
basin available at FICH. 

Indeed, the coexistence of 2D with 3D turbulence structures, and the possibility of treating 

them in a separated manner may have profound influences in the numerical modelling of 

shallow turbulent flows, as vividly suggested by Nadaoka and Yagi (1998) themselves. Put 

another way, a 3D numerical simulation of all the significant structures of a turbulent flow 

could be cost prohibitive (Shi et al., 1999; Zedler and Street, 2001), if not impossible even 

with today’s computers, while using the 2D depth-averaged shallow water equations could 

provide almost the same information at much lower cost (Nadaoka and Yagi, 1998; Bousmar 

and Zech, 2002). This conclusion was reported by Lloyd and Stansby (1997) when comparing 

2D and 3D numerical shallow-water models with experimental data obtained in the wake of 

conical islands. They found that in some cases, the 3D model produced poorer representations 

of the wake features than the 2D model. 
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Usually, if the shallow flow is uniform and wide, the 3D structure of turbulence is 

characterized by a streamwise vortex pattern in the plane normal to the local axis of the 

primary flow (Gulliver and Halverson, 1987). In this case, the size of the 3D vortex pattern is 

definitely bounded by the thickness of the water layer. However, some of these shallow 

turbulent flows are readily susceptible to transverse disturbances that may grow into large-

scale instabilities characterized by 2D vortical structures. Examples of these large-scale 

turbulent structures characterized by coherent eddies of Kelvin-Helmholtz type, and called 2D 

coherent structures (2DCS) by Jirka (2001), are encountered in shallow wake flows (typically 

an island wake (Wolanski, et al., 1984), shallow jets (Dracos et al., 1992), and compound 

channel flows (Tamai et al., 1986). Consequently, the distribution of turbulent energy in such 

flows has a spatial structure determined by the internal geometry of the flow. These 

observations have led researchers to formulate the hypothesis that turbulent energy is stored in 

two separated structures; while 2D turbulent kinetic energy is stored and transported by large 

horizontal eddies of size l1 much larger than the water depth, 1/ 1h l << , 3D turbulent kinetic 

energy is confined to smaller eddies, whose size l2 is primarily controlled by the length scale 

that bounds the free-surface flow (i.e., water depth; (Gulliver and Halverson, 1987)). The 

formation of horizontal large-scale eddies, or 2DCS, are determined by the magnitude and 

distribution of the lateral flow velocities initially imparted by different acting mechanisms, 

which, according to Jirka (2001), are reduced to two dominant types:  

• Type A or Topographical “discontinuities” typically occur whenever there is an abrupt 

change in bed topography (i.e., as encountered in a channel-floodplain system (Tamai et al., 

1986)); or at abrupt changes in flow width due to the presence of obstacles (such as islands, 

groynes, etc.) that lead to the formation of a strong transverse shear layer and flow separation.  

• Type B or Flow velocities “discontinuities” typically occur where an abrupt change in 

the lateral distribution of the streamwise flow velocities gives rise to the gradual growth of 2D 
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vortical elements. Such abrupt changes in lateral direction may be triggered by differential 

bed roughness in a compound channel (Gulliver and Halverson, 1987), or by excess or deficit 

of momentum in shallow jets (Dracos et al., 1992) and shallow wakes (Chen and Jirka, 1995), 

respectively. 

In spite of the physical basis of the concept, the existing measurements on the subject are 

not entirely clear with regard to the physical mechanisms underlying the separation between 

2D and 3D turbulent structures in shallow flows. (Dracos et al., 1992) provided some of the 

most conclusive experimental evidence on shallow jets, where an inverse cascade of spectral 

energy that follows the law of “2D turbulence” (Kraichnan, 1967) is observed. Jirka (2001) 

has recently reviewed this issue. A distinction should be made here between unstable and 

stable flows. Whereas the aforementioned shear flows constitute the prototype of 

hydrodynamic instabilities commonly found in many open flows, the approaching flow 

problem considered here is not necessarily unstable in the sense of the linear stability theory 

(Drazin and Reid, 1981). Indeed, for transversely sheared flows, namely shallow wakes, 

shallow jets, and compound channel flows (also known as the shallow mixing layer), the 

larger, resolvable coarse scale that characterizes the 2DCS is linearly unstable to small 

perturbations and is governed by a modified version of the Orr-Sommerfeld equation. This 

issue was established by Chen and Jirka (1998) for shallow jets, by Chen and Jirka (1997) for 

shallow wakes, and by Ghidaoui and Kolyshkin (1999) for compound channel flows, among 

many other contributors to the subject. Conversely, in the approaching flow problem 

considered here, there are neither topographic nor velocity discontinuities that may act as 

forcing mechanisms to trigger the onset and growth of 2DCS, except downstream of the 

contraction. So, it is natural to ask if only transversely sheared flows are likely to exhibit the 

segregation between vertical (small) scales and horizontal (large) scales. Moreover, the 

discharge to the floodplain downstream of narrow bridges could behave as a jet when looking 
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at from the far field (Dracos et al., 1992). Thus, the hypothetical formation of 2DCS 

downstream of the opening could have considerable impact into the subsequent floodplain 

evolution (Figure 3.1). In this case, the inlet conditions to those types of sheared large-scale 

motions will be given by the problem studied here. 

Thus, in keeping with the current state of knowledge on shallow turbulent flows, the 

objectives of the experiments presented in this work were:  

(i) to provide better insight into the mechanisms that may separate the 2D and 3D 

turbulence scales in a broad, shallow and laterally contracted turbulent flow, and  

(ii) to provide data sets that can be used as benchmarks for 2D and 3D shallow water 

numerical modelling. To that end, the evolution of the power spectra at different flow 

positions was used to verify the separation of scales hypothesis.  

Emphasis was placed on studying the alternating 2D and 3D turbulence structures the flow 

develops as it approaches the contraction, and as it encounters the fixed scour hole located at 

the end of a long abutment (Figure 3.3), where a strong secondary flow sets in. Thus, it can be 

argued that a combination of two forcing mechanisms were studied in this work:  

(a) Geometrical forcing: given by the lateral contraction that breaks the plan-form 

symmetry of an otherwise wide and uniform shallow flow (Figure 3.2), and  

(b) Topographical forcing: generated by the scour hole located at the abutment end that 

breaks an otherwise flat bottom (Figure 3.3). As a result, an extensive set of measurements of 

the 3D velocity field established in a 0.1m thick layer of water flowing on the wide basin 

sketched in Figure 3.4 was made with an Accoustic Doppler Velocimeter (ADV), as 

explained in section 3.3. 
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Figure 3.3 Fixed scour hole located at the contraction end. 

3.2 On turbulent flows with a spectral gap 

Assuming initially that the aforementioned forcing mechanisms form two well-

differentiated inertial ranges with a spectral gap between them, it is possible to estimate the 

expected length scales of the 2D and 3D turbulent structures of the open flow studied here by 

resorting to shallow water theory. 

The energy in a turbulent flow is primarily dissipated at small scales (large wavenumbers), 

and thus energy is transferred from larger scales (small wavenumbers) to smaller ones to 

compensate for this loss. Consequently, at relatively large scales, energy is simply transferred 

from scale to scale. Kolmogorov’s hypothesis states that an intermediate range of scales 

exists, the inertial range, which is sufficiently large for viscosity to be negligible but small 

enough for the boundary effects to be safely ignored. Thus, the average rate of cascade of 

turbulent kinetic energy ε is the only relevant information about the structure of the flow. If 

the size l of the energy-containing eddies is in the inertial range, the statistics of the 
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corresponding turbulence intensity (or rms of the velocity fluctuation) u′must depend on l 

and ε only through the relation 3~ ' /u lε . If these scales are now related with the dissipation 

scales in turbulence for length ( )1/ 43~ /dl ν ε  and velocity ( )1/3~d dlυ ε , typical velocities and 

length scales differences are on the order of  

1/ 4 3/ 4~ Re , ~ Re
'
d dl

u l

υ − −  
(3.1) 

based on the Reynolds number Re ' /u l ν=  for the large-scale turbulent motion. Pouquet et al. 

(1983) stated that if 3~ /i i iu lε ′  and 1~ −
ii lk  are the energy production rate and the 

characteristic injection wavenumber for the large-scale ( 1i = ) and the small-scale ( 2i = ) 

turbulence, respectively, where the two driving scales l1 and l2 are such that 1/ 12 <<ll . It 

follows from (3.1) that the viscous cutoff for E2(k), the energy spectrum that would be 

obtained with small-scale forcing only, is 3/ 4
,2 2 2~ Redk k , whereas for E1(k), the spectrum that 

would be obtained with large-scale forcing only, is ( ) 3/ 4

,1 1 1~ Reeffdk k . Here, 2 2 2Re /u l v′=  

and 1 1 1 2 2Re /eff u l u l′ ′=  are the Reynolds number for the small-scale turbulent motion and the 

effective Reynolds number for the large-scale turbulent motion, respectively, assuming that 

the small-scale turbulence acts on the large-scale as an eddy viscosity of the order of 22ul ′ . 

Spectral segregation between both driving scales requires not only 1/ 12 <<ll  but also 

1/ 21, <<kkd . 

The determination of 1u′  and 2u′  requires, in general, the use of special averaging 

techniques (Tamburrino and Gulliver, 1999), whereas the ratio l2/l1 can be estimated in the 

context of the shallow water theory. Then, by using simple scaling argument, it is possible to 

establish that bed resistance and inertia are in balance on distances on the order of h/CF, where 

CF is the bed friction coefficient, 
2

Bτ / Uρ=  (τB is the bed shear stress, and ρ is the fluid 
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density). Jirka (2001) stated that the distance 2h/CF is the largest eddy size that a 2DCS can 

attain in a sheared, shallow turbulent flow (the factor 2 stems from different definitions on the 

bed resistance law). Therefore, if it is assumed that the large-scale motion of the shallow 

turbulent flow studied here is essentially 2D in the mean flow, scaling with F1 C/~ hl , 

whereas the 3D energy-containing eddies scale with a length hl α~2  such that α 1< , that is., 

bounded by the size of the water layer, the ratio for l2/l1 can be estimated as 

F
1

2 C~ α
l

l
 (3.2) 

within the bounds of the shallow water theory. Here, the bed friction coefficient was 

evaluated using the smooth wall laws of von Kármán and Prandtl, with the pipe diameter 

replaced by four times the water depth, 

F

F

4Re 8C1
2log

2.518C

 
=   

 
 (3.3) 

as dictated by the hydraulically smooth bed condition encountered during the experimental 

work, as measured with the Reynolds number * *Re /sU k ν=  based on the friction velocity 

( ) 21
B

/

* /U ρτ= , and on an equivalent bed roughness height ks for smooth cement, 

approximately equal to 0.3mm.  

Finally, an estimate for the signal-to-noise ratio (SNR) can be obtained if it is assumed that 

the noise registered by the instrument, 2u′δ , represents about 10% of υd. From (3.1), this 

estimation can be computed as 

( )

1/ 4
2

1/ 4

~10 Re

~ 5.6 Re

SNR

α
 (3.4) 

by assuming a rms of the order of 0.1U. This estimate of the SNR should not be confused with 

the instrument accuracy. It is just a crude estimate of the expected separation between the 
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magnitude of the sought signal, 2u′ , and the background noise, 2u′δ , whenever the underlying 

hypothesis is fulfilled. 

For the free-stream conditions encountered well upstream from the opening (Figure 3.2), 

where 16.0~U ms−1 and 1.0~h m, the approaching flow was fully turbulent with a Reynolds 

number Re ~16000  and a Froude number ( )1/ 2/Fr U gh=  approximately equal to 0.12. Here, 

g is the acceleration of gravity. Other parameters values were 008.0~*U ms−1, *Re ~ 2.4 , 

025.0~2u′ ms−1, and 0025.0~CF . For the measurements, the ADV was mounted from above 

(down-looking probe tip mode) sampling at its maximum standard rate of 25Hz with a 

velocity range of ±10 cms-1. According to the manufacturer, expected noise at 25Hz is 

approximately 1% of the velocity range, which is approximately twice as much as the 

aforementioned estimated for the SNR, 50/22 uu ′≅′δ  (taking α~0.4 for reasons that will 

become clear later on). Therefore, the measured noise level was deemed smaller enough than 

the expected velocity fluctuations, and in order to ensure a proper operation of the instrument, 

the SNR was maintained above 15dB during the experiments, as recommended by the 

manufacturer (Sontek, 2000). 

3.3 Experimental arrangement 

Figure 3.4 shows a schematic drawing of the facilities used for the present work. The 

experiments were conducted on a rectangular basin with a horizontal floor made of smooth 

cement, with a streamwise length of 20m and a width of 10m. Two pumps operating in 

parallel drove the flow in the closed circuit. The system pumped water from a sump into a 

constant head tank to ensure a constant discharge during the experiments. The supply flume 

was fed from the constant head tank through a discharge pipe. At the upstream end of the 

supply flume, a triangular weir measured the flow rate. Water was introduced to the basin 

from the upstream end with the supply flume through a submerged row of honeycomb bricks. 
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This screen of bricks served to damp out any incoming disturbance into the basin. The lateral 

walls of the basin were made with bricks lined with cement plaster. Two profiles were placed 

on the lateral walls of the basin to allow the free displacement of a 10m wide, small cart that 

carried one SontekAccoustic Doppler Velocimeter for measuring the thre components of the 

velocity field. A smooth vertical screen was placed at 2m from the left wall all along the 

length of the basin. The width of the test section was thereby restricted to 8m. A 3m long by 

0.15m wide abutments was located at 10m from the entrance of the basin, leaving a 5m wide 

gap to simulate the bridge opening effect (Figure 3.4). The average water depth was set to 

0.1m during the experiments, and controlled with a 10m wide adjustable gate located at the 

downstream end. The test section for measurements was set 4m upstream and 1.75m 

downstream from the axis of the long abutment, and then divided into 11 cross-sections 

0.25m apart, with the exception of two additional cross-sections located just upstream of the 

long abutment, and 0.05m downstream of it. One more was located at the beginning of the 

test section (Figure 3.4). Observations of the turbulent flow were taken with the ADV along 

174 verticals, with a resolution ranging from 3 to 14 points each depending on the flow 

region. The higher vertical resolution was employed in and around the scour hole region 

(Figure 3.3). Since the center of the ADV sampling volume is 5cm from the probe tip, the first 

measured point on each vertical was located approximately 5cm below the free surface, and 

the last one about 5mm above the bottom. 
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Figure 3.4 Schematic diagram of the basin used for the experiments (1, weir; 2, input pipe; 3, feeding flume; 4, 

test section). 

A preliminary visualization of the free-surface velocities was made by seeding the flow 

with small pieces of white paper, approximately 4mm in diameter (Figure 3.2). A complete 

set of photographs of the flow pattern taken around abutments of different lengths using a 

35mm camera with long exposure time can be found in the work of Scacchi (2003). These 

preliminary observations, in combination with numerical results obtained with some 2D 

computational codes (Telemac, 1998) determined that the structure of the approaching flow at 

the beginning of the test section was not influenced by any small perturbation that could be 

present at the inlet section. The inflow rate was 0.128m3s−1, and the flow was uniformly 

distributed to within 4%± on a cross-section located 1m downstream of the inlet section. This 

corresponds to a mean bulk velocity 16.0~U m/s-1 as previously explained. 
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3.4  Results 

Figure 3.5 shows the 3D projection of the mean flow after averaging the flow 

measurements obtained on the grid. The mass continuity discrepancy measured inside the test 

section was ±5%. The two-dimensionality of the flow structure is clearly visible in most of 

the approaching region, becoming 3D in and around the scour hole. 

 
Figure 3.5 3D mean velocity field recorded with an ADV inside the test section 

In order to compute the change in the spectral response of the flow, a minimum of 4096 

points were collected with a sampling rate of 25Hz at every point of the defined measurement 

grid to diminish the noise influence on the power spectral estimation. The recorded velocity 

data file of 4096 points were divided into seven overlapping sub-records of 1024 points each. 

Then, the power spectrum and correlation function were computed with a fast Fourier 

transform (FFT) algorithm by averaging all seven sub-records. Figure 3.6 shows the 

progression of spectral changes that occurs as the flow approaches the contraction. The four 

points where the spectral density functions were calculated are labelled A, B, C, and D in 

Figure 3.4. In summary, the spectral response of the flow is examined as the mean flow 
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gradually accelerates upstream of the contraction (point A and B), as it encounters the sudden 

change in bed topography at the contracted region (point C), and as it suddenly expands 

downstream of the contraction (point D). The spectra are presented in dimensional form 

((cms-1)2/Hz-1) for the turbulent fluctuations of the longitudinal and vertical components of the 

flow velocity, u’ and w’, respectively. All the spectra were computed from measurements 

taken ~6cm below the free surface (Table 3.1), approximately, starting at the beginning of the 

test section (Figure 3.4). 

The first horizontal velocity spectrum (Figure 3.6a) flattens out in the range 5–12.5Hz, 

while the vertical velocity spectrum falls out to the Nyquist frequency at 12.5Hz at the well-

known Kolmogoroff –5/3 power law. In other words, a universal inertial subrange is clearly 

distinguishable for the vertical velocity component. The maximum of the energy density of 

the longitudinal component is nearly flat, with two distinct peaks that are not reproduced by 

the w’ spectrum. The location of the second peak marks the beginning of a subrange with an 

energy cascade that exhibits the –3 wavenumber dependence, typical of an enstrophy cascade 

of 2D turbulence. This peak is more distinguishable on the second spectrum (Figure 3.6b), 

which also exhibits a small subrange compatible with the development of two-dimensional 

turbulence characterized by an enstrophy cascade. The u’ spectrum of point C (Figure 3.6c) 

shows two well-differentiated peaks followed by a –3 cascade. Then, the w’ spectrum shows 

that the energy transfer relaxes towards three-dimensional turbulence following a –1 

dependence, for wavenumbers larger than the associated k of the second peak (namely k2, see 

Table 3.1), when the enstrophy cascade subrange ends. In the vicinity of k1, where k1 is the 

wavenumber associated with the first peak of the spectrum (large-scale turbulence), the 

spectrum follows a dependence close to k3 for 1kk < , and to k−3 for 1kk > . This k3 shape of 

the spectrum is repeated in Figure 3.6d, where its energy peak shows an increase in magnitude 

by a factor of 10. The u’ spectrum of point D exhibits a subrange with a –3 cascade, and an 
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inertial three-dimensional range for larger wavenumbers (better appreciated on the w’ 

spectrum). Again, there is a subrange in between the –3 and the –5/3 ranges that seems to 

follow a –1 dependence. Dracos et al., (1992) also found this wavenumber dependence when 

the transfer process relaxes from 2D to 3D turbulence. Changes in flow frequencies are 

summarized in Table 3.1, and frequencies names are depicted in Figure 3.7 on a linear scale 

plot, where the spectral gap is better appreciated. Figure 3.8a,b depict the autocorrelation 

function computed for points A,B,C, and D. The autocorrelation point for point B shows a 

better organization of the flow into large-scale structures with respect to point A, locate 

upstream. The small-scale motion attributed to flow modes trapped by the local bed 

topography give rise to quasi-periodic oscillations in the autocorrelation function 

corresponding to point C. In this case, from the zero-crossing of the oscillating part of the 

autocorrelation function, it is possible to infer that the mean period of oscillation is in good 

agreement with the corresponding peak frequency f2 of the energy spectrum (Figure 3.6c). 

The quasi-periodic oscillation of point C are superimposed to a larger time scale motion, 

which is approximately of the same order of magnitude of the time scale observed in the 

correlation function of point D. 
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Figure 3.6 One-dimensional energy spectra of the streamwise and the vertical turbulent fluctuations estimated 
with FFT technique. a) u’ and w’ spectra at position 4−=x m, b) u’ and w’ spectra at 1−=x m, c) u’ and w’ 

spectra at 0=x m, d) u’ and w’ spectra at 75.0=x m. 
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Figure 3.7 Superposition of the velocity fluctuation spectra (linear scale) measured at points B, C, and D 
(spectrum of point D is referred to the second vertical axis). 

 

  

Figure 3.8 Auto-correlation functions at points A, B, C and D. 
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Kraichnan (1967) showed that the dynamics of the stationary-forced homogeneous 2D 

turbulence have two inviscid constants of motion. Consequently, it follows that there are two 

distinguished cascade process: energy transfer at a rate ε  and vorticity transfer (enstrophy 

cascade) at a rate β. These two formal inertial ranges are expressed as 2 /3 5/3( ) ~E k kε − , and 

33/2~)( −β kkE , where the latter needs a logarithmic correction factor to avoid a 

logarithmically divergent total enstrophy (Kraichnan, 1971). Since the kinetic energy flux 

through the enstrophy cascade is zero, the kinetic energy produced at rate ∈ at ki can only 

cascade backwards, toward scales larger than 1/ ik . This process is clearly appreciated in the 

spectra of Figure 3.6, where the energy initially confined in the neighbourhood of 

~ 2 /o o ok f Uπ  (at the beginning of the enstrophy cascade) is pumped toward larger and larger 

scales (Figure 3.6c,d), while vorticity is pumped through the –3 range down to the dissipation 

range. The wave packet containing most energy of the small-scale motion (second peak on 

Figure 3.6c) is swamped by large-scale effects further downstream (point D, Figure 3.6d and 

Figure 3.7). Indeed, another inverse cascade process is acting at point C, better appreciated on 

the w’ spectrum, where energy produced at frequency f2 is pumped backward to smaller 

frequencies (larger scales). In this case, the energy level on the w’ spectrum shows an increase 

from 100 to 500 (cms-1)2/Hz-1 approximately (Figure 3.6c,d). The fact that the concentration 

of small-scale energy observed within the scour hole is not longer sustained further 

downstream reinforces the idea that small-scale effects act as an eddy viscosity on the large-

scale motion. In other words, the Reynolds number of the large-scale motion can be reduced 

by a factor 22/ lu′ν  downstream of the scour hole. 

On one hand, the peak around 0.1Hz at the spectra of points C and D can be attributed to a 

double inverse transfer process that continues piling up energy until scales the size of the 

entire flow geometry, lg, are strongly excited. In this case, the size of the gap ( 5~gl m) is of 
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the same order of magnitude of the observed largest energy-containing eddy, ~1l 3.8m, at 

point D (Table 3.1). The consistency of the k3 dependence as k→0 (infrared range) of the 

energy spectra of points C and D suggests the expression  







>β

<
−

1
33/2

1
3

,

,
~)(

kkk

kkkc
kE  (3.5) 

for some constant c. This form of the spectrum has been shown valid for freely decaying as 

well as for forced-2D turbulence (Ossia and Lesieur, 2001). The geometrical forcing induces 

an inverse cascade that piles up energy in the vicinity of the wavenumber 1
1 ~

−
glk . Similar 

inverse transfer of energy was observed along several streamwise alignments, parallel to the 

line ABCD depicted in Figure 3.4 (Carrasco, 2002). Consequently, it is possible to argue that 

the wavy 3D vortex patterns eventually present well upstream of the contraction, which are 

unstable and therefore very hard to spot (Gulliver and Halverson, 1987; Tamburino and 

Gulliver, 1999), evolve into different, large-scale 2D structures due to the geometrical 

forcing, i.e., the turbulent energy is fed from the accelerating mean flow as the contraction is 

approached, storing energy in the range of scales dictated by the flow geometry. 

On the other hand, the second peak observed at the spectra of point C, namely at frequency 

f2, is related to a mode trapped by the bed topography. Using the long-waves approximation, 

the mth transverse natural mode of oscillation for a closed rectangular basin is given by 

bghmf om 2/, = , where b represents the size of the basin (scour hole) in transverse direction. 

Similarly, for a circular basin of radius b/2, the natural modes of oscillation are 

bghzf nmnm π′= /,. , where nmz ,′  is the nth zero of the derivative of the mth Bessel function of 

first kind, 0)( , =′′
nmm zJ . It is clear that the shape of the scour hole is neither rectangular nor 

perfectly circular, and has such a variable depth (Figure 3.3) that the determination of the 

natural frequencies and modes requires numerical computations. Moreover, the solution must 
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satisfy the radiation condition, which is violated in the aforementioned formulae valid for 

closed basins. Nevertheless, using h ~ 0.3m and b ~ 0.9m, which are the maximum depth and 

the approximate size of the scour hole used during the experiments, respectively, the 

agreement between observed and theoretical estimates are quite remarkable (Table 3.1). In 

consequence, the peak observed at frequency f2 in Figure 3.6c can be attributed to flow modes 

trapped by the local bed topography. 

Pt x(m) z(m) U(m/s) h(m) f (Hz) iiii fUkl π− 2/~~ 1
(m) 

A −4.0 −0.058 0.15 0.1 oo ff ′, ~ 0.07, 0.32  2.14, 0.47 

B −1.0 −0.058 0.19 0.1 oo ff ′, ~ 0.29, 0.42 0.66, 0.45 

C 0.0 −0.077 0.27 0.3  f1 ~ 0.10  

 f2 ~ 1.86 

 f2,0 = 1.91 (rectangular basin) 

 f2,1 = 1.85 (circular basin) 

 f0,1 = 2.32 (circular basin) 

2.70 

0.15 

D 0.75 −0.058 0.38 0.1  f1 ~ 0.10 3.80 

Table 3.1 Progression of spectral changes as the flow approaches the contraction 

3.5  Conclusions 

The shallow turbulent flow that approaches the opening of a supposedly relief bridge, with 

a local scour hole located at the contraction end in an otherwise flat bed, has been investigated 

experimentally. It has been established that the geometrical and topographical forcing gives 

rise to an energy spectrum with two well-differentiated peaks. This spectral segregation 

represents quasi two-dimensional turbulent motion for the large-scale l1, and three-

dimensional turbulent motion for the small-scale l2, respectively. 

The phenomenological estimate obtained for the separation of scales satisfies 

F12 C~/ ll (within the bounds of the shallow water theory), which is one order of magnitude 

smaller that the experimental findings reported here 

3 2
F 2 1(C ~ 2.5 10 / ~ 0.15 / 3.80 3.9 10 )l l− −× < ≅ × . Nevertheless, the required condition for the 
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spectral segregation to occur, 1/ 21, <<kkd , is clearly satisfied. In addition, the small-scale 

turbulence generated inside the scour hole satisfies the constraint 1/2 <hl , that is, 

α ~ 0.15 / 0.30 0.5= , as expected. 

It was found that the flow turbulent energy that is initially stored at scales 5~/ hlo  is 

transferred to much larger scales by the geometrical forcing through an inverse cascade 

process, until scales the size of the entire flow geometry, lg, are strongly excited. It was also 

found that energy spectrum exhibits a k3 and k–3 (enstrophy cascade) dependence around the 

large-scale wavenumber lg
−1. This subrange with power 3 and –3 of the spectrum should be 

reproduced by any numerical computation based on large eddy simulation (LES) techniques. 

The topographical forcing, which only acts locally, produces a large amount of turbulent 

kinetic energy concentrated at small-scales by trapping and exciting flow modes due to the 

shape of the “submerged” scour hole. The highly variable bed topography injects a large 

amount of small-scale turbulence into the flow, which is diffused toward larger scales by 

another inverse cascade process (Figure 3.7) and transported downstream. Consequently, it is 

likely that the topographical forcing reduces the effective large-scale Reynolds number from 

ν′ /11lu  to 2211 / lulu ′′  approximately, downstream of the region of high topographic gradient. 

This observation, in combination with the potential formation of very large, horizontal 

vortical structures downstream of the contraction should be of considerable importance for 

those interested in simulating numerically the sediment transport capacity of such flows. 

Finally, in spite of the fact that in the present study was possible to characterize the 

spectral changes of the flow established upstream and on the vicinity of the contraction area 

with an ADV instrument, it will be convenient to perform a similar study using PIV 

techniques (Uijttewaal and Jirka, 2003). With the PIV capabilities, it will be possible to 

determine the complete velocity and vorticity field of the large-scale motion at all relevant 

positions in a completely non intrusive way. 
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CHAPTER 4 Laboratory study of alternate bar formations 

 

 

 

 

4.1 Introduction 

Alternate bars are prominent features of alluvial channels. They develop as a result of an 

instability process that arises from the coupling between flow and sediment transport in 

mobile channels on a spatial scale typically of the order of channel width, with a grow rate 

associated with the bed erosion-deposition process. The presence of bars exerts a strong 

influence on the flow field and the sediment transport process by forming a roughness effect 

generated by the local expansion losses at the bar edges. The resulting pattern greatly 

enhances the erosion of channel banks and, consequently, induces bend growth rate and 

channel shifting. Thus, the presence of bars is one of the main factors controlling the 

morphology of alluvial channels, affecting several aspects of fluvial engineering. Changes in 

river morphology occur in response to several factors, including magnitude, duration, 

frequency and sequence of floods, and the impact of sediment supply influenced both by 

natural processes and human impacts. The natural variability in the morphology of a given 

river reflects variations in the resistance of the banks to erosion and in the forces exerted by 

the river on the banks. Variation in the form, size and slope of the channel interact with 

channel flows and sediment regimes to produce complex local variations in flow hydraulics 

and, thus, in the erosive forces imposed by the river on its bed. Variations in the materials 

forming the bed and banks, vegetation cover and hydrological processes within the banks also 

influence the resistance to erosive forces of the bed. 
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It has been shown that bars form when a small perturbation of the bottom is capable of 

triggering a first bar. The flow field downstream of the initial bar then generates further bars 

“just like in a chain reaction” (Fujita and Muramoto, 1985). The spatial stress exerted on the 

bed combine with the availability of sediment, whether in the bed or supplied from local bank 

erosion or upstream, is the mechanism that sustains the alternate bar evolution and migration. 

The present investigation has been aimed at provide experimental evidence of the influence of 

the sediment availability (mainly from the banks) in the alternate bar phenomena. Previous 

studies have focussed upon bank materials and bank hydrological processes (e.g. 

Couperthwaite et al., 1998, Wyzga, 1999), the shear stresses imposed by river flows (e.g. 

Thorne, 1990; Abernethy and Rutherfurd, 1998) and the dynamics of the fluvial sediment 

erosion, transport and deposition (e.g. Duysings, 1986, Mitchell et al., 1999). Therefore, few 

experiments of alternate bars formation with loose lateral banks are available. Among them, it 

is worth to mention the works of Schumm and Khan (1972) that investigated the effect of the 

slope on channel patterns and determined slope ranges that marked significant changes on 

channel pattern, and Federici and Paola (2003) who performed experiments aimed to analyze 

the dynamics of channel bifurcations in loose sediments, finding that alternate bars formed 

rapidly in a straight channel initially cut through the cohesionless flat sloping surface. 

According to Federici and Paola (2003), the alternate bars patterns developed a sequence of 

rhythmic bumps on both banks while the stream displayed a tendency to meander just 20 min 

after the initiation of the experiment. 

In this direction, a comparative study to analyze the differences between loose and fixed 

banks under identical bed slope, water discharge, and sediment flux will help to clarify if the 

formation of alternate bars is indeed the preferred evolving spatial scale of the problem, 

delaying the riverbank erosion processes, and consequently, the lateral migration of the 

stream for much longer time scales. To that aim, a set of laboratory experiments has been 
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conducted in a “regime flume” at the Novak Hydraulic Laboratory of the School of Civil 

Engineering and Geosciences at the University of Newcastle upon Tyne, UK. This chapter 

describes the experimental facilities used during the experiments, detailing the various series 

of runs performed during this research, as well as the analysis and discussion of the 

subsequent findings. 

4.2. Materials and methods 

To allow alternate bars to develop naturally, a straight channel of 22m long and 2.5m wide, 

covered by a movable bed of 600mm depth of uniform sediment ( 50 0.94mmd = , taken from 

Ershadi (2005)), was used (see Figure 4.1). The result of the sieve analysis taken from Ershadi 

(2005) can be seen in Appendix B. The channel is built in a recirculating circuit for both 

water and sediment. The channel length is divided into three parts, the inlet, the outlet and the 

test reach. The inlet is 2m long and it is used as an upstream storage tank. The test reach is 

18m long filled with the uniform sand, and the outlet is 2m long and it is also used as a 

downstream storage tank. From there, a pipe of 80mm of diameter conveyed the sediment-

water mixture back into the channel, with the help of a centrifugal pump of 39l/s of maximum 

capacity. 

A calibrated electromagnetic flow meter is placed in the recirculating lines in order to 

measure the flow discharge (Figure 4.2). The electromagnetic flow meter Promag 33F is 

connected to a personal computer by a Commubox FXA 191 system (see Figure 4.3) and is 

used to facilitate the flow rate control visualizing it values on the computer monitor in the 

form of a user friendly graphical interface.  
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Figure 4.1 Schematic layout of the regime flume. Taken from Ershadi (2005). 

 

 

Figure 4.2 Electromagnetic flow meter. 
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Figure 4.3 Commubox FXA 191 system. 

 

Figure 4.4 Tilting gate placed at the channel outlet. 

In order to obtain uniform flow or normal depth, an adjustable tilting gate at the 

downstream end controlled water level to a height accuracy of 0.1mm (Figure 4.4). The flow 

is pumped to a guide channel that widens gradually up to the design experiment width. A 

diffuser pipe and a honey-comb shaped metal diffuser in the guide channel, together with a 

grid (metal mesh), and pebbles in the entrance of the main channel (Figure 4.5) dissipate 

excess energy of the pumped water to allow free uniform flow of water and sediment mixture. 
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Figure 4.5 Energy diffusers at the channel in the inlet 

 

Figure 4.6 Sediment feeder. 

The flume is also equipped with a screw type sediment feeder, which is located above the 

main channel inlet (Figure 4.6) allowing the sediment to be fed over the full width of the main 

channel. The whole experimental facility has been intensively used in the last few years, and 

consequently it has been assumed that all of its components were in good working conditions 
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for the purposes of this work. For further information regarding calibration of the 

aforementioned equipments refer to Haidera (2002) and Ershadi (2005). 

4.3 Experimental set up 

The experimental conditions were carefully selected in such a way that the adopted initial 

bed geometry, flow and sediment transport conditions not only conform with an equilibrium 

cross-section according to regime or White, Paris and Bettess (WPB) theory (White et al., 

1981) for straight channels, as explained next, but also to assure that the prevalent conditions 

were within bed load transport mode only cb** τ>τ  (Figure 4.7) albeit well below from the 

region of expected significant suspended sediment mode, cs** τ<τ . The latter threshold is 

given by the Bagnold’s criteria, 1/* ≅swu , where *u  is the shear velocity, ( ) 2/1
* /ρτ= , and sw  

is the bed sediment fall velocity. *τ  is the dimensionless bed shear stress, ( τ /ρb gRD= , where 

ρ is fluid density, g acceleration of gravity, and R submerged specific weight of the sediment, 

ρ /ρ 1 1.65s= − =  for the present case). The initial conditions chosen to run the experiments 

were apparently within the unstable range of the controlling parameter β, according to 

standard linear stability theories (Figure 4.8).  

To set up the experiments the initial channel cross-section dimensions were predicted by 

the WPB theory (White et al., 1981), and latter modified to better approximate the stable 

width and depth. This was through a better approximation of boundary shear stress (Valentine 

and Haidera, 2001). Previous work due to Shakir (1992), Babaeyan-Koopaei (1996), 

Valentine et al., (2001), and Haidera (2002) showed that equilibrium cross-sections for 

straight channels in laboratory conditions are wider and shallower than the section predicted 

by the WBP theory. The ratio between the predicted and measured values for channel width 

was between 0.46 and 0.51 and for channel depth was between 1.5 and 1.7. Therefore, the 

predicted dimensions for the initial channel were adjusted according to Haidera’s (2002) 
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modification. The proposed initial channel is trapezoidal in cross-section and straight in 

planform. 

 

Figure 4.7 Threshold values for initiation to motion (Shield’s Curve). The circle enclosed the initial conditions 
set up during the experiments (Table 4.1) 

The desired initial channel cross-section was excavated in the sand using a wooden board 

fixed to a carriage placed on top of side rails (see Figure 4.9). These rails can be manually 

adjusted to the desired slope. The carriage is also used to place the measurement kits, such as 

the point gauge and current meter, allowing traversing the flume in crosswise or y-direction, 

and travelling in longitudinal or x-direction along the channel, in both downstream and 

upstream directions. After scraping the channel the bed slope and final moulded shape were 

obtained using a point gauge. 
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Figure 4.8 A classical stability diagram (taken from Colombini et al., 1987) 

 

Figure 4.9 Initial experimental cross-section excavated in the sand at Laboratory facilities available at Newcastle 
University, Newcastle upon Tyne, UK. 

The experiments where started by letting flow a very low discharge over the bed to prevent 

its deformation during the initial stage. The flow discharge was then slowly increased until 

the desired value was attained. All the experiments were run for inbank situation under full 

bank (FB) condition. After the experiment started, the bed deformation process began to 

develop spontaneously. During this process, the bed deformation was monitored periodically 

(every two hours), measuring local values of variables such as bar height and bar length, and 

channel widening. The channel started adjusting under uniform flow condition until the 
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widening rate was below 1% per hour, suggesting an equilibrium state was reached. The 

duration of the development process varied with flows and channel conditions (initial cross 

section). A regime condition was generally achieved after a period of about 4 hours.  

A primary procedure in any of the tests carried out in this work was to establish that the 

flow was in an uniform state. This implied that the three gradient lines, namely the energy 

slope ( )Sε , the water surface slope ( )wS  and the longitudinal bed channel slope ( )oS  were 

equal, i.e., w oS S Sε = = . Under this condition, the average flow depth and velocity were 

constant for all cross sections along the test section. To ensure that uniform flow was indeed 

established along the channel, the water surface slope was measured with the point gauge 

mounted on the carriage and any level differences with the bed slope was adjusted with the 

tilting gate.  

At the end of the development process, constant or equilibrium values of the different 

parameters were reached - uniform sediment transport and equilibrium cross-section. Once 

the equilibrium state was reached, the experiments were allowed to run for at least 10 hours, 

thus giving them a total duration that ranged from about 10 to 20 hours.  

Measurements of the water surface elevations were made before the end of the 

experiments. Transverse profiles were taken every 0.5m along a control reach of 10m, 

covering the central part of the test reach, allowing to characterize a few bar units. Longer 

control lengths were not used because it was necessary to discard any possible perturbation 

introduced by the inlet and outlet. Three longitudinal profiles located at 15%, 50% and 85% 

of the channel width were measured to characterize the bed deformation in longitudinal 

direction. Bed profiles were measured every two-hour period; and the widening rate and 

sediment concentration were measured every 30 minutes. 

To perform the bedforms measurements, the experiments were stopped by turning off the 

pump every two-hour. This generated a rapid recession of the flow inside the channel, with 
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almost no sediment transport associated with it, which prevented the deformation of the 

existing bedforms. Preserving the bedforms at restart was of paramount importance since the 

measurement of the bed elevation was taken without water. The effect of bar dissection 

induced by the withdrawal of the water was always found to be negligible. Additionally, a set 

of photos of the control reach was taken during this period, in order to follow the downstream 

bedforms migration. 

In order to fulfil the main objective of this research work, two different configuration or 

scenarios were considered. In the first scenario the experiments were performed with fixed or 

non erodibles banks (Series A), i.e., no interaction between channel banks and bed was 

permitted. In the second series of tests (Series B) the banks were erodible or loose allowing 

therefore the interplay with higher levels of sediment availability into the system. 

4.3.1 Experiments with fixed banks (Series A) 

A total of four fixed banks experiments were performed, using the same bed slope 

( 0.002= ) and range discharges from 6 to 10l/s with different initial cross sections. The aim of 

this set of experiments was to collect hydraulic and sediment transport data, namely channel 

dimensions, shape, flow, sediment rate and alternate bar characteristics with other 

researcher’s values. 

During the experiments corresponding to Series A (Fixed banks) and after the chosen cross 

section was excavated, the channel banks were fixed by burying into the sand two thin metal 

layers (1mm thick) on each side all over the channel length, keeping a constant cross section 

all along the experimental run (see Figure 4.10a). The hydrodynamic equilibrium criterion to 

stop the run was whenever the sand bars configuration (length and height) was the same (very 

similar) after two consecutive observation steps. 
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Figure 4.10 a) Experiments with fixed banks; b) Experiments with loose banks. 

4.3.2  Experiments with mobile banks (Series B) 

During the mobile bed-bank experiments, the objective was to evaluate what sort of 

potential impact the new sediment availability would have over the formation and evolution 

of bars, in other words, starting from the same initial conditions as those used for the Series 

A, Will the free bars form and behave similar to the fixed bank configuration, or the channel 

with loose boundaries will tend to meander right away, as reported by Parker (1976), Federici 

and Paola (2003) among others? For comparison purposes, the experimental conditions used 

for both series of test is specified in Table 4.1, whereas Figure 4.11sketches the initial cross 

sections used to start the experiments. 

Experiment 
Q 

(l/s) 

S0 

(m/m) 

Bb 

(mm) 

z 

(m/m) 

Ho 

(mm) 

Ho
+
 

(mm) 

Bt 

(mm) 
ββββ Banks 

R_1_05 6 0.002 391 1.7 33.0 34.3 519 13.78 Mobile 

R_2_05 6 0.002 391 1.7 33.0 34.3 519 13.78 Fixed 

R_6_05 8 0.002 604 1.7 33.0 32.4 716 20.00 Mobile 

R_5_05 8 0.002 604 1.7 33.0 32.4 716 20.00 Fixed 

R_7_05 9 0.002 604 1.7 33.0 34.7 716 20.00 Mobile 

R_8_05 9 0.002 604 1.7 33.0 34.7 716 20.00 Fixed 

R_2_04 10 0.002 537 1.77 42.2 39.0 676 14.37 Mobile 

R_4_05 10 0.002 537 1.77 42.2 39.0 676 14.37 Fixed 

Table 4.1. Complete set of experiments run 

a) b) 
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where Q is the steady discharge, So is the channel slope, Bb and Bt are bottom and top channel 

cross-section width respectively, z is bank slope, Ho is the expected water depth obtained from 

the regimen theory, Ho
+ is the expected normal flow depth for flat bed computed with the 

classical resistance formula of Keulegan, using D50 as the representative size of bed roughness, 

and β=B/H is the channel width-depth which is the controlling parameter in linear stability 

analysis (see e.g. Colombini et. al., 1897). The values of normal flow depth computed as 

indicated differ within ±2 mm from those estimated using the WPB theory (Haidera, 2002) 

under identical flow discharge, slope and sediment type. 

 
Figure 4.11 Initial cross-sections 
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4.4 Procedures used for collecting data  

In this section, the procedures used to collect and calculate relevant data produced during 

the experimental runs is discussed. Experimental data collected include the water discharge, 

channel slope, sediment concentration, cross-sectional geometry, and bars configuration 

(essentially, bed topography). These procedures are discussed in detail in the following 

subsections. 

4.4.1 Water discharge 

All the experiments were carried out at steady discharge. The water discharge was 

measured with the flow meters in litres per second (l/s) with an accuracy of 0.01± l/s. The 

discharge was adjusted and recorded at each time step (every 30minutes). It was attempted to 

keep the average discharge at its target discharge during each time step. The recorded values 

of discharge were averaged to find out a representative value for the run. In all cases, the 

discharge fluctuated around the mean discharge within 0.1± l/s, being the standard deviation 

of the measured flow values from the mean value within 0.5± %. 

4.4.2 Sediment concentration 

The specialized literature covers a variety of opinions about the best way to represent the 

sediment concentration of the channel (Leopold and Wolman, 1957; Schumm and Khan, 

1971; Ackers and Charlton, 1970; among others). In previous works the sand fed at the 

channel inlet has been used as representative of the sediment transport (e.g. Leopold and 

Wolman, 1957 and Schumm and Khan, 1972). Nevertheless, this way to set up the sediment 

concentration along the channel –determine by its inlet value– was not accurate enough due to 

the sediment deposition along the channel, causing the amount of sand at the channel outlet 

frequently to differ from the quantities fed into the channel. As a solution, Ackers and 

Charlton (1970) measured the sediment concentration at the downstream end of the channel 

and averaged it over the time span, once the channel established a stable condition. 
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For the present study, and following Haidera’s (2002), Babaeyan-Koopaei (1996), and 

Shakir (1992) recommendations, the representative value of the sediment transport was 

obtained as the mean of the measured sediment concentration at the channel outlet, once the 

stable condition was attained. However, the problem of obtaining a representative sediment 

concentration is very similar to the problem of fixing a representative discharge in a river with 

variable flow. It may be perhaps a range rather than a single value that could represent the 

channel sediment concentration in an alluvial channel. Nevertheless, when a channel reaches 

an equilibrium state, the water surface profile becomes straight and the sediment transport rate 

becomes uniform (Chang, 1985). Therefore, the average sediment transport rate, when the 

channel becomes fully developed, can be used as representative for an equilibrium channel. 

In all the experiments performed for this thesis, the sediment was recirculated into the 

channel. The sediment concentration was measured at the downstream channel end by 

collecting samples during 2 minutes every 30 minutes with a sediment trap (basket). The wet 

samples were weighed using an electronic balance with an accuracy of 1±  gram (Figure 

4.12). 

 
Figure 4.12 a) The electronic sediment balance, b) The sand trap for collecting the sediment. 

The sediment concentration in terms of mg/l (ppm) was determined by mean of 

( / ) *0.81sQX mg l
Q

=  
(4.1)  

b) 

 a) b) 
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where X is the sediment concentration in ppm, Qs is the wet sediment transport rate in mg/s, 

and 0.81 is the wet to dry ratio of the bed material. 

4.4.3 Channel bed and water surface slope. 

The bed and water surface elevation at the channel centre line were measured with a point 

gauge mounted on the carriage to determine the channel slope and the water surface slope, 

respectively. The measured sections were 1m apart along the test reach, and the slope of the 

line that best fit these values was considered the respective slopes. Both values were 

calculated with a precision of 0.001± m/m.  

4.4.4 Bedform characteristics 

The definition of the variables used to describe the bed deformation produced during the 

experiments is shown schematically in Figure 2.6. Basically they correspond to the set of 

variables included in the dimensionless relationships from Appendix C (Eq.(C.15)). In the 

Figure 2.6 the maximum scour is defined with respect to the initial bed elevation. The flow 

depth was computed by first obtaining a mean value of the water surface elevation along the 

channel, and then subtracting the mean bed elevation from this value. 

Some researchers (e.g. Ikeda, 1984) define two characteristic values of the bar height. One 

of those values is shown in Figure 2.6, and corresponds to the difference between the 

maximum and minimum bed elevation at the section of maximum scour. The other parameter 

usually employed is the maximum bar height, defined as the difference between the maximum 

and the minimum bed elevation within a wavelength, which do not necessarily coincide at the 

same cross section. Herein, such differentiation is not made because in all cases, the 

maximum bar height was observed to occur precisely at the section of maximum scour. 

The rest of the parameters characterizing the bed deformation, such as wavelength, were 

computed directly from the data collected, such that mean values, characteristic of each 

experiment, were computed as simple averages over the available measurements. As the 
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system ran, we monitored the location of migrating bars fronts down the entire flume length at 

2 hours intervals. The flow was turned off and bed topography was mapped with a point 

gauge (Figure 4.13). 

 
Figure 4.13 Alternate bar formation in straight channel experiment. Characteristics: Wavelength 2-3m 

( 5.6L B= ) and Height 0.007-0.0010m. 

4.4.5 Bed migration rate measurement 

A very approximate measurement of bar celerity rate was determined using a visual 

method based on recording the time that the crest of a bed needs to travel between two 

predetermine cross-sections. 

4.4.6 Cross-section geometry  

Every two hours, the bed levels were measured with an accuracy of ±0.5mm. The point 

gauge used was attached to the carriage and moved transversely with an accuracy of ±1mm 

and longitudinally with an accuracy of ±0.5cm. Three independent longitudinal profiles were 

measured using this set up at 15%, 50% and 85% of the channel width, respectively. 

4.4.7 Regime -or equilibrium- criterion 

A channel with movable bed is said to be in ‘regime’ when it has adjusted its cross 

sectional shape, slope, sediment carrying capacity and plan form geometry to an equilibrium 

condition. In other words, a channel is in regime if it adjusts its plan and profile to a stationary 

or equilibrium condition. A related concept is that of a graded river: a river which conveys 

sediment downstream without net deposition or erosion through a series of reaches is referred 

to as being graded or in equilibrium. It is still uncertain if such a graded river can exist in 

nature and how it could be recognized presently or in ancient strata. Indeed, the fluvial grade 

concept has long been a subject of debate and survived centuries of discussion (Muto and 
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Swenson, 2005). Consequently, the equilibrium condition criterion varies between 

researchers. During their experiments, Leopold and Wolman (1957) determined an 

equilibrium condition when the water surface was parallel to the stream bed after successive 

measurements of the longitudinal profile of water surface and dry stream bed. Schumm and 

Khan (1972) assumed that a channel was in equilibrium when the major channel adjustments 

were complete and the channel becomes relatively stable. Stability here implies no further 

significant adjustments of channel shape dimensions or pattern occur. 

The regime concept is generally considered synonymous of equilibrium (Chang, 1998). 

This concept originated from the study of stable alluvial canals, where for a mobile bed and 

banks there is no degradation or aggradation over an operating cycle. However, due to natural 

discharges variation in natural rivers, the true regime or dynamic equilibrium may never be 

achieved, although each river is adjusting itself in this direction. 

Due to the fact that no unified criterion was readily available to define equilibrium, for this 

work whenever the water surface was straight, the widening rate was 2%≤  per hour, and the 

sediment concentration measured was approximately uniform and regular, then the channel 

was assumed to be in an equilibrium state. This is coincident with the criteria used for 

previous research in these experimental facilities (see Shakir, 1992; Babaeyan-Koopeai, 1996; 

Haidera, 2002; and Ershadi, 2005). 

4.5 Results and discussion  

The results description of the channel bed evolution in response to steady flow conditions 

is based on measurements taken during eight different runs performed with fixed and mobile 

banks. Table 4.2 contains values of all relevant parameters of performed runs. It can be 

assumed that, for the measurements of the bed topography, the duration of all experiments 

was sufficiently long to ensure the establishment of equilibrium conditions for sediment 

transport and that bars reach their maximum configuration. 
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Run 
Q 

(m3/s) 

B  

(m) 

h  

(m) 

Area  

(m2) 

Rh 

(m) 

V 

(m/s) 
Re Fr β 

τb 

(kg/m2) 

X 

(mg/l) 
θ 

R-1-05 0.006 0.524 0.037 0.0210 0.032 0.286 10255 0.480 14.59 0.704 155.54 0.046 

R-2-05 0.006 0.519 0.034 0.0193 0.029 0.311 10417 0.540 15.49 0.657 198.96 0.043 

R-6-05 0.008 0.730 0.035 0.0279 0.032 0.286 10124 0.485 20.62 0.694 168.41 0.046 

R-5-05 0.008 0.716 0.033 0.0254 0.030 0.314 10362 0.553 21.73 0.646 132.23 0.042 

R-7-05 0.009 0.791 0.034 0.0314 0.034 0.286 10543 0.476 21.47 0.722 174.23 0.047 

R-8-05 0.009 0.716 0.036 0.0278 0.032 0.323 11584 0.545 19.98 0.703 132.30 0.046 

R-2-04 0.010 0.716 0.041 0.0325 0.037 0.308 12675 0.484 17.37 0.808 156.17 0.053 

R-4-05 0.010 0.676 0.042 0.0315 0.037 0.317 13327 0.494 16.09 0.824 175.45 0.054 

Table 4.2 Experimental results 

The eight runs described in Table 4.2 were conducted with four different water discharges.  

Figure 4.14 shows the records of water discharge for the eight runs, where it can be seen 

that for all of them the water discharge variability was smaller than 1.5%, with standard 

deviations smaller than 0.5%. From these plots, it can be safely assumed that water discharges 

were fairly constant all along the experiments performed. 

Regarding the sediment transport established during the experiments, and according to the 

criterion for incipient motion of Shields (modified by Parker et al. (2003)) only bed load 

transport mode could have been expected for the initial conditions in these experiments (see 

Figure 4.7). It is interesting to use a sediment transport formulae, for example, Meyer-Peter 

and Müller (1948) or MPM for shorthand, to compare with measured data 

( )3/ 2* * * *8 , 0.047b c cq = τ − τ τ =  (4.2) 
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Figure 4.14 Discharges for the experiments. 
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The relation was derived using flume data pertaining to well-sorted sediment in the gravel 

sizes. Recently Wong (2003) and Wong and Parker (2006) found an error in the analysis of 

MPM. A re-analysis of all the data pertaining to plane-bed transport used by MPM resulted in 

the corrected relation, where the exponent turns out to be 3.2/2 instead of 3/2 

( )1.6* * * *4.93 , 0.047b c cq = τ − τ τ =  (4.3)  

whereas if the exponent 3/2 is retained, the best-fit relation is 

( )3/ 2* * * *3.97 , 0.0495b c cq = τ − τ τ = . (4.4)  

Other popular equation is the one due to Parker (1979), a fit to Einstein (1950) relation that 

estimates the sediment transport for a flow condition known as “plane-bed” transport, i.e., 

transport in the absence of significant bedforms, 

( )
4.5*

1.5* * *
*

11.2 1 , 0.03c
b cq

 τ
= τ − τ = τ 

. (4.5) 

All the above equations were made dimensionless with the scaling relationships 

* b
b

q
q

RgDD
= , and (4.6) 

*

50

b

RgD

τ
τ =

ρ
 (4.7) 

where R is the submerged specific gravity of sediment (1.65), g the acceleration of gravity, τ* 

the Shields Number, τb the boundary shear stress at the bed, and ρ the water density. 

Then, the sediment concentration was calculated using Eqs. (4.3)  (4.4) and (4.5) and 

compared with the measured sediment transport. The calculations are included in Table 4.3. 

When sediment concentration was compared with classical MPM, modified MPM, and 

Parker’s formulas (Eqs.(4.2), (4.4) and (4.5), respectively), it was found that modified MPM 

and Parker’s formulas overestimate the actual sediment transport rates, measured following 
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the procedure mentioned before (Table 4.3). However the Wong and Parker (2006) formulae 

(Parker, 1976) appears to perform better than the others. 

Run Measured (ppm) MPM 
Wong and Parker 

(2006) 

Parker 1979 after Einstein 

(1950) 

R-1-05 1152 2516 2275 3517 
R-2-05 1474 2268 2036 3170 
R-6-05 1663 2463 2224 3444 
R-5-05 1306 2211 1982 3091 
R-7-05 1936 2614 2370 3655 
R-8-05 1470 2508 2268 3507 
R-2-04 1928 3094 2836 4326 
R-4-05 2166 3184 2924 4453 

Table 4.3 Rates of sediment transport 

As explained before, sediment transport rates were experimentally determined during the 

runs. Figure 4.15 shows the variation of sediment transport concentrations with time for run 

R-1-05 and R-7-05. The fluctuation can be explained by the migration of bedforms (Knight, 

2001). It can be seen in the figure that there was an exponential decay tendency for the first 2 

hours showing the transition to equilibrium conditions –on average– from some unbalance 

initial conditions. This tendency in the sediment transport is associated with bank erosion and 

channel width adjustments, as explained next. Consequently, the reduction in the fluctuations 

of the sediment transport rates can be considered as a sign of channel cross-section stability 

after channel bed slope adjustments and the formation of free bars, which in turn, locally 

affected the sediment transport rates. 
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Figure 4.15 Sediment transport concentration of total discharge with time 

The channel width was measured manually in streamwise direction during the experiments, 

together with water depth at the end of each run. Previous work by Shakir (1992), Babaeyan-

Koopaei (1996), Valentine et al. (2001) and Valentine and Haidera (2001) assumed that 

stopping the flow after reaching the equilibrium conditions does not have any significant 

effect on the channel dimensions. Moreover, Benson et al. (2001)  used a solution of sodium 

silicate to freeze the loose boundaries of an equilibrium channel confirming the previous 

assumption. 
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Figure 4.16 shows the channel width adjustment during the development of Series B or 

loose banks experiments. It can be seen that the rate of widening after the first two hours was 

constant and very small, in coincidence with the settling of the sediment transport rates 

depicted in Figure 4.15. It was found that the channel widening rate after 2 or 3 hours of 

starting the run was less than 1%, which suggests that the channel has achieved an 

equilibrium state thereafter (Figure 4.16). For the experiment with 6l/s, however, the 

widening increased during the first few hours, from 2-5h, but latter decrease drastically to a 

rate less than 1% per hour. This is an indication that the initial cross section predicted by the 

rational approach (White et al., 1981) for run R-1-05 was far away from the true stable cross 

section for the given combination of discharge, sediment transport, and slope. Any other local 

discrepancy with the general tendency can be attributed to a measurement error. 

 
Figure 4.16 Widening with time. 

Soon after introducing water into the channel, alternate or free bars appear. The 

mechanisms of free bars formation is considered fairly settled when sediment transport 

mainly occurs as bed load, the flow is steady and the sediment is well sorted (Blondeaux and 

Seminara, 1985; Colombini et al., 1987; Struiksma and Crosato, 1989; Schielen et al., 1993 ). 
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Under these circumstances both theoretical investigations and experimental observations 

suggest that the crucial parameter controlling the formation of free bars is the width to depth 

ratio β of the channel: free bars will form whenever β is above some threshold value 

depending on both flow and sediment parameters (Figure 4.8). The instability diagram 

depicted in Figure 4.8 was produced using linear theory, (see Appendix C for a complete 

stability analysis). Linearization for small perturbations of a given couple basic flow- 

sediment transport, usually starting from a flat bed configuration and governed by a set of 

nonlinear partial differential equations representing conservation laws, is the first method to 

be used in any study of the stability properties of the system. Simply put, the basic flow-bed-

sediment transport configuration is stable if all perturbations which are small initially remain 

small for all time, and it is unstable if at least one perturbation which is small initially grows 

beyond some bound such that it ceases to remain small after some time (Drazin and Reid, 

1981). In the case of dominant bed load the nonlinear development of free bars has also been 

investigated, and it has been shown that it may lead to a periodic (Colombini et al., 1987) or 

quasi periodic pattern (Schielen et al., 1993). It is widely accepted that the initiation of 

alternate bars responds to an intrinsic instability mechanism arising from the interaction of the 

turbulent flow with the underlying erodible bed interface. In Figure 4.8, the shadowed area 

denoted the range of width to depth ratio used during this work indicating the invariable 

growth of any small perturbations introduced during the experimental run. 

Olesen (1983) performed a linear perturbation analysis of a horizontal two-dimensional 

mathematical model for the flow and bed topography in straight alluvial rivers with dominant 

bed load. The results of this model suggested that wavelengths of alternate bars are about 

three to four times the channel width: 

(3 ~ 4)Bλ =  (4.8) 
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For all the experiments performed for this thesis, the observed alternate bars wavelengths 

were larger than those predicted by Olesen’s criteria (see Table 4.2) 

It is also interesting to test the capabilities of some empirical criteria to predict the 

formation of free bars given the conditions used in the experiments. Based upon experimental 

data, Chang et al. (1971) found that alternate bars were observed when the width-depth ratio 

of channel flow is greater than 12 (in coincidence with Figure 4.8). This is the case for all 

experiments performed in the University of Newcastle facilities, as it can be seen in Table 4.2. 

Jaeggi (1984) carried out a series of experiments in a 25x0.3m flume, using natural sands 

with mean grain sizes of 0.52, 1.8 and 4mm; and PVC granulate of cylindrical shape with 

mean diameter of 3.0mm, Jaeggi (1984) used this data in junction with the data of Chang et 

al. (1971) to establish a criterion for alternate bars formation, which suggests limits for 

alternate bar formation. The upper limit is given by 

0.152.93ln 3.13B BZη = η −  (4.9) 

where η is the ratio of Shields factor to critical Shields factor / cη = θ θ ; ηB is the ratio of 

Shields factor characterizing bar forming to critical Shields factor; and ZB is /B d , the relative 

roughness related to channel width. For uniform materials the lower limit is given by the 

beginning of motion of the bed material, i.e. 

1
cr

θ
η = =

θ  
(4.10) 

Alternatively, a more general expression for defining the lower limit of alternate bar 

formation is: 

0.67

90

50cr

d

d

 θ
η = =  θ    

(4.11) 

Then, Jaeggi (1984) expressed that the minimum condition for the slope at which alternate 

bars will form is 
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(4.12) 

where M is a function of sediment grading and varies from 0.34 (uniform material) to 0.7 

(widely graded material). Table 4.4 shows the minimum slope for alternate bar formation for 

our channel geometry and bed material. Besides the fact that the slope used during this work 

(0.002 m/m) is very similar and sometimes slightly smaller than to the minimum slope 

subjected by Jaeggi (1984), we had alternate bars in all the runs. 

Run B (mm) Minimun Slope 

R-1-05 524 0.002605 

R-2-05 519 0.002619 

R-6-05 730 0.002163 

R-5-05 716 0.002186 

R-7-05 791 0.002071 

R-8-05 716 0.002186 

R-2-04 716 0.002186 

R-4-05 676 0.002257 

Table 4.4 Minimun slope for alternate bar formation, following Jaeggi (1984). 

Chang (1985) suggested another criterion for alternate bars formation based upon the 

relative magnitudes of the stable width of streamflow, BS, and the channel width between the 

banks, B. The stable width is proportional to the square root of the discharge  

0.5
sB Q∝ . (4.13) 

If, at a higher discharge, the stable width is greater than the channel width, then the stable 

width is constrained by the rigid banks. In such a situation, alternate bars do not form due to 

the lack of freedom for stream sloping adjustment to the equilibrium conditions. For the 
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experiments performed in this work the stable width was always smaller than the channel 

initial width, see Table 4.5 for results. 

Cross section Run Q (m3/s) BS B (m) 

1 R_1_05 and R_2_05 0.006 0.077 0.519 

2 R_6_05 and R_5_05 0.008 0.089 0.716 

3 R_7_05 and R_8_05 0.009 0.095 0.716 

4 R_2_04 and R_4_05 0.010 0.100 0.676 

Table 4.5 Chang criterion for alternate bar formation (1985). 

Soon after introducing water into the channel, the rate of widening was initially fast, and 

declined after three hours to less than 2% per hour. Finally a “stable state” was attained. 

Nevertheless, it was necessary to run for a longer period of time in order to let the alternate 

bars reach their maximum growth. From an almost flat bed, the selection process of bar length 

was quite fast, where bars undergo a slower development process until they reach a quasi- 

steady equilibrium amplitude (Fujita and Muramoto, 1985).  

In the initial stage of bar formation, alternating sequences of scoured and deposits areas 

were formed and channel morphology linked down the entire flume as described in Figure 

4.17. As the bar grew and the channel widened, some particles were carried onto the bar head 

and deposited there, while others were deposited laterally onto the distal end of the bar. 

Following the pattern of bedload transport and deposition described by Kinoshita (1961) and 

Fukuoka (1989): The flow diverges over the bars and converges in adjacent pools. The 

sediment is transported over the entire bar surface and deposited over a slop face at the distal 

end as the bar migrates downstream. Once the bars formed and reached a certain height, 

growth of the bar almost stopped. Little or no material was then deposited on the top of the 

bar, and the erosion zone was no longer located at the deepest point, but at the toe of the 

upstream slope of the bar. Material then moved around the main body of the bar, and it was 

deposited at the downstream end of the bar where a characteristic tail formed (Jaeggi 1984). 
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Details of the channel bed topography temporal evolution are plotted in Figure 4.17. The 

alternate bars wavelengths ranging from initial values of around 0.58-0.88m, 1.57 to 2.36 

channel widths, and final values of 2.8-3.0m, between 6.75 and 7.23 channel width. 

Transverse profiles were taken along a control reach of 10m, covering the central part of the 

test reach, allowing the characterization of two to three bar unit. The upstream 7m of the 

channel were not considered since a few channel widths were necessary to allow both the 

boundary layer to develop and the supply sediment to spread within the entire cross section. 

The downstream limit of the measuring reach, moreover, was imposed by the overall size of 

the moving carriage. 

Initially ( 4 ~ 8t h= ), the bar form tends to be rather symmetrical. However, as the bar 

grows, the lee face becomes much steeper than the upstream faces and the ideal boundary 

between a riffle and the lateral pool rotates toward the front producing the characteristic 

diagonal pattern (Defina, 2003). Clearly bar growth requires upstream bars to distort an 

otherwise uniform sediment flow pattern. As long as the rate of bar decay is smaller than the 

rate of bar generation, a train of bars of increasing length is formed in the channel. Otherwise 

bars undergo a slow damping until suppression (Defina, 2003). 

After the initial quick growth, a condition near equilibrium is attained, which is 

characterized by very slow change in bar celerity, wavelength and height over time. During 

the later stages of bar growth and in the vicinity of bar fronts, the flow field becomes three-

dimensional. At the beginning of bar growth, the rate of pool deepening is more pronounced 

than the front shoaling rate, as a result, the maximum relative scour increases. Later, near 

equilibrium, relative scour decreases back in accordance with both the theoretical findings of 

Colombini et al. (1987), and the experimental observations of Ikeda (1982). 
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Figure 4.17 Bar migration in the channel. Dashed line indicates the bar migration along the bank with time. The 

flow is left to right. 

In Figure 4.18  is seen the evolution of bars along the experiments for water discharge of 

6l/s. For the case of fixed banks (left of Figure 4.18 ), bars of different length developed 

simultaneously along the channel after 2h run. On the contrary, for loose banks we can clearly 

see the sequence generation-growth-migration of the bars (right of Figure 4.18 ). After six 

hours, bars had reached the maximum configuration and migrate downstream without 

significant changes in their dimensions.  
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Figure 4.18 Evolution of alternate bar formation for 6 /Q l s=  
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Figure 4.19 Evolution of alternate bar formation for 8 /Q l s=  
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Figure 4.20 Evolution of alternate bar formation for 9 /Q l s=  
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Figure 4.21 Evolution of alternate bar formation for 10 /Q l s=  

In Figure 4.19 is seen the evolution of bars along the experiments for water discharge of 

8l/s. In the case of fixed banks bars started to develop after 4h, and took another 6h to be fully 
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developed. In the case of loose banks bars start to develop after 2.5h and carry on growing 

until they fully developed 8.5h after starting the experiment (right of Figure 4.19). Bars 

behave in a similar way to those ones in the experiment for 6l/s. Similar comments can 

translate for the remaining experiments (see Figure 4.20  and Figure 4.21 ). 

The bank erosion process, for the case of loose banks, can explain the different behaviour 

for fixed and loose banks experiments. In the case of the first experiments (Figure 4.18 ) the 

initial cross section is closer to the equilibrium allowing the bars to develop faster than the 

other experiments, achieving their maximum configuration sooner. Conversely, in the other 

experiments (Figure 4.19, Figure 4.20  and Figure 4.21 ) the initial cross-sections were a bit 

away from equilibrium slowing down the entire process. Finally, the bank erosion has a 

strong stabilization effect in the loose banks experiment, driving the channel faster to 

equilibrium. 

In Figure 4.22  and Figure 4.23 the bed topography in the development process observed in 

runs R-1-05 and R-2-05 are illustrated. Bars hardly develop uniformly along the whole reach 

of the stream bed: a more developed bar always forms, upstream and downstream of which 

alternate bars characterized by decreasing height are observed. It seems that the topography is 

close to an equilibrium configuration when the most developed bar has reached the 

downstream section of the flume: from that time on, the bar development seems to be constant 

in time and spatially growing (in agreement with Federici and Colombini (2004)). The final 

configuration of the bars seems to depend mostly on highly nonlinear interaction processes, 

among which merging and dividing are the most important. 



 102 

4 6 8 10 12 14 16 18

200

210

220

230

240

x (cm)x (cm)

 Centre

 Left bank

 Right bank

4 6 8 10 12 14 16 18
-30

-20

-10

0

10

20

30

4 6 8 10 12 14 16 18

200

210

220

230

240

∆∆ ∆∆
y
 (
c
m
)

y
 (
c
m
)

Q = 10l/s

Q = 9l/s

Q = 8l/s

 Centre

 Left bank

 Right bank

4 6 8 10 12 14 16 18
-30

-20

-10

0

10

20

30

4 6 8 10 12 14 16 18

200

210

220

230

240

 Centre

 Left bank

 Right bank

4 6 8 10 12 14 16 18
-30

-20

-10

0

10

20

30

4 6 8 10 12 14 16 18

200

210

220

230

240

 Centre

 Left bank

 Right bank

4 6 8 10 12 14 16 18
-30

-20

-10

0

10

20

30

Q = 6l/s

 
Figure 4.22 Final bed configurations for loose banks experiments. 
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Figure 4.23 Final bed configurations for fixed banks experiments. 

Bar migration: The Figure 4.24 plots the bar migration in the channel. The bars in the 

channel with fixed banks migrate further than did those in channels with loose banks in the 

same period of time, indicating that the bar migration speed is greater in the channel with 
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stronger banks, in agreement with the findings of Jang and Shimizu (2004). The migration 

speed decreased with time. Channel widening leads to a decrease in bar migration, which 

affects the increase in bar wavelength. From Figure 4.24 it is possible to see that for the case 

of loose banks, as the aspect ratio increased, the dimensionless bar migration speed decreased. 

Fujita and Muramoto (1985) and Jang and Shimizu (2004) obtained similar results during 

their experiments. Bar migration is influenced by bank strength. Perhaps the forcing effects 

between the alternate bars and the side banks are weaker with stronger banks. This is in good 

agreement with the theoretical prediction of Seminara and Tubino (1989). 

Bar height: as the aspect ratio increased, the dimensionless bar height increased as shown 

in Figure 4.24. This was seen in the experimental results of Fujita and Muramoto (1985). The 

same dimensionless bar height, in a channel with weaker banks, occurs in a wider channel 

than it does in a channel with stronger banks because of the higher forcing effects between the 

bars and banks. 

Bar wavelength: the mean wavelength is plotted for each time step in Figure 4.25. For the 

case of loose banks each time step corresponds to a different aspect ratio. For the runs with a 

water discharge of 6l/s (Figure 4.25a) the mean wavelength of loose bank channel is shorter 

than for the fixed banks one and the variation of the mean wavelength is more significant 

( ~ 60%  for loose bank and ~ 37% ). Figure 4.25b shows similar results for the runs with 

10l/s. In the former, the mean wavelength of the loose bank channel is again shorter than the 

fixed banks case one and the variation of the mean wavelength is similar to the previous 

experiment ( ~ 60% ), with a significant variation of the absolute value of the order of ~ 0.5  

for 6l/s and ~ 1.5  for 10l/s). However, a significant reduction in the variation for fixed banks, 

channel is seen with changes from 35%, for a water discharge of 6l/s, to a 20% for 10l/s. At 

this point is necessary to highlight that the absolute variation is similar for both experiments 

with fixed banks ( ~ 0.5 ).  
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Figure 4.24 Bar migration for Runs for 6l/s with fixed and loose banks. The arrow symbol indicates the bar front 
migration along the bank with time. The flow is left to right. Bar wavelength varied from six to ten channels 
widths. The time in hours is indicated to the right. 
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Figure 4.25 Plot of mean wavelength versus the aspect ratio for runs with fixed and loose banks. 

Figure 4.26 shows a comparison for wavelengths between loose and fixed banks. The 

wavelength shows more variability for the case of fixed banks. For loose banks there is a clear 

tendency to reach a maximum configuration, as the bars grow longer. On the contrary, for 

fixed banks seems like if there were new bars appearing all the time in the channel. For 

example time period 1 and 5 seems to have almost the same range of sizes. The time 

evolution of wavelength bars for the fixed banks case seems to indicate the convective nature 
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of free bars, where bars first appear, grow, and then decay to appear later again (Federici and 

Seminara, 2003) 

 

Figure 4.26 Plot of wavelength variability. 
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exhibiting an oscillatory behaviour. At the beginning of the experiment the dispersion remains 

constant for the first two time periods ( ~ 3.0 ), then bars reduce their length to achieve a 

minimum (~ 1.5 ) in the fourth time period. After this, bars length expand and contract again 

in the following time period but the magnitude of the variation is decreasing. This 

phenomenon clearly shows the stabilizing effect of the loose banks. The erosion process 

generates changes in the channels geometry, and also provides additional material to build up 

the bars, changing the stability characteristics of the channel geometry. This phenomenon can 

be seen in the appearance of the longer bars, that converges exponentially to the mean 

wavelength value. In the case of the fixed banks channel the longer bars decrease in an 

oscillatory way but in a stable fashion. In this channel, bars have to adjust their length to 

satisfy the geometrical restrictions imposed by the channel, being the alternate bars 

appearance the only stabilization mechanism available. 

For many years researchers thought of alternate bars as the building block mechanism for 

channel meandering; Parker (1976) highlight that sediment transport is a dynamical necessary 

condition for the occurrence of instability leading to meandering either in flow or in the bed. 

On the other hand, Seminara and Tubino (1989) explained theoretically the process where the 

widening of the channel results in local bank erosion, which depends on the migration of bars 

that could lead to a meandering or braiding channel. They showed that bar migration speed 

was influenced by lateral expansion of the channel, which tended to slow bar migration and 

increased bar wavelength. Besides, for the case of loose banks experiments, the interacting 

erodible bed and the stationary flow modify the cross section slightly without introducing 

channel sinuosity.  

“As long as the river is neither or widening nor narrowing its channel, bank material is 

being scoured and deposited inside it. If a stream maintains an equilibrium width (which it 
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happens to our experiments, this status must be interpreted as a statistical equality of the rate 

of scour and the rate of deposition” (Einstein, 1972, notes). 

The procedure followed during this experiment was similar to Haidera’s work, (Haidera, 

2002; Haidera and Valentine, 1999). With the channel being subjected to inbank flow, the 

main channel widened rapidly, especially during the first hours of the experiment, as the main 

channel became shallower with increasing side slopes (Valentine et al., (2001). Valentine and 

co-workers called this a ‘dish-shaped channel’. Following the introduction of water and 

sediment into the channel, the channel started to widen and most of the channels attained 80 

to 90% of their final stable channel width in the initial three to four hours. These was regarded 

as acceptable as the channel had reached a stable configuration, by approaching a new regime 

channel condition. This small increase in width seemed unavoidable in the case of such a non-

cohesive bank material. Although it was generally noticed that the channel width for this 

experiments became relatively stable after 4-5 hours, the channel initial cross-section was 

reworked increasing the bed height for the case of loose banks and eroding it for fixed banks 

(Figure 4.27) 

Figure 4.28 shows a comparison of the final bed elevation for an experiment with fixed and 

loose banks respectively. For the former case, the bed elevation trend to erode with time, 

while for the loose banks case the bed grows, rising with the time. So, for the second case, 

there is a trend to redistribute sediment, raising the channel bed by eroding the banks. 

Figure 4.29 and Figure 4.30 shows the channel cross section evolution with time, and 

Table 4.6 summarizes the results of a simple mass balance performed for runs R-1-05 and R-

2-04, which were computed by comparing the cross section areas.  

 



 110 

 

 
Figure 4.27 Bed level evolutions. 
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Figure 4.28 Bed elevation, a) Run (R-2-05) with fixed banks and b) Run (R-1-05) with loose banks. 
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Figure 4.29 Channel cross-section evolution with time. 
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Figure 4.29 shows the evolution for run R-1-05. The negative areas characterize the 

erosion processes, while positive areas depict the aggradations process. In the transition from 

initial cross-section to the equilibrium one both process take action by reshaping the channel: 

the equilibrium cross-section is wider and shallower than the initial one in concordance with 

the findings of Valentine et al. (1996) at the “Flow Channel Facilities, Wallingford”. The 

erosion dominates this transition, 67.3% of the modification is due to erosion, while only 

32.7% is due to aggradations (see Table 4.6). On the other hand, in the transition from the 

equilibrium to the final cross-section the aggradation governs the reshaping process, where 

13.4% of the cross-section changes are due to erosion while 86.6% is shaped by the 

aggradations. 

 R-1-05 R-2-04 

Section 
Initial 

(S1) 

Equilibrium 

(S2) 

Final (S3) Initial 

(S1) 

Equilibrium 

(S2) 

Final 

(S3) 

Area 0.0154 0.0165 0.018 0.0255 0.0282 0.0281 
Area Diff with S1  0.0010 0.0025  0.0026 0.0025 
Area Diff with S2   0.0014   -0.0001 
Erosion Dif with S1  -0.0021 -0.0014  -0.0026 -0.0083 
%  67.3 35.6  49.75 76.80 
Erosion Dif with S2   -0.0002   -0.0067 
%  13.4    102.23 
Aggration Dif with S1  0.0032 0.0039  0.0053 0.0108 
%  32.7 64.4  50.24 23.19 
Aggration Dif with S2   0.0017   0.0065 
%  86.6    -2.23 

Table 4.6 Mass balance results. 
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Figure 4.30 Channel cross section evolution with time: Initial (red), equilibrium (blue) and final (green). 
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4.4  Chapter summary. 

It is known from well-controlled flume experiments that an initially straight prismatic 

channel with erodible bed and banks will adjust its width, depth and slope to achieve a stable 

quasi-dynamic configuration by transporting certain amount of water and sediment (Schumm 

and Khan; 1972), albeit occasionally in unpredictable fashion (Federici and Seminara; 2003). 

Moreover, even for the simplest case of well-sorted sediment being transported for a given 

discharge, the final channel stable configuration can only be asserted with a high degree of 

uncertainty, where the culprit can be traced to the development of bedforms (ASCE 2000). 

Gravel bed rivers generally display an alternating structure, while central bars or higher-

order transverse modes are not likely to form spontaneously, unless the channel is fairly wide. 

Notice that predicted and observed values of the longitudinal wavelength of bars fall in the 

range of 5-12 channel widths. 

Theoretical results for bar formation in both sandy rivers (Tubino et al., 1999) and tidal 

channels (Seminara and Tubino, 1998, and 2001) have recently been derived within the 

context of a linear framework. Both analyses refer to an infinitely long straight channel, with 

a bed composed of fine homogeneous sediment; they essentially differ for the different 

character of the basic flow of which the stability is investigated: the basic flow is steady in 

Tubino et al., (1999), while the channel is subject to a propagation of a tidal wave in the 

analysis of Seminara and Tubino (2001). In particular, in the latter work at the leading order 

of approximation, local inertia and spatial variations of tidal wave are found to be negligible 

at the scale of bars: hence, free bars feel the tidal wave as an oscillatory longitudinally 

uniform flow. On the other hand Schielen et al. (1993), suggested that a straight reach with a 

length of few hundred widths it required to appreciate the associated modulation of bottom 

configuration. 
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In this chapter, the regime channel flume used during the experiments reported here, and 

the associated equipments and the accuracies they are able to deliver were described. The 

specific procedure followed for each run all along the experiments was explained, as well as 

the salient details of the data collected. Then, the available laboratory data have been used to 

describe the free bars formation for both fixed and loose banks. 

Within the limitations imposed by the facilities and equipment available, the main 

findings of this work are: the results confirm previous findings that a self-formed channel 

under normal flow condition tends to produce a new regime straight section which is more 

dish-shaped with gentler side slopes. These changes tend to minimise the interaction effect 

between the main channel and bank. While the channel width became stable then the channel 

shape became uniform along the channel reach, and thereafter the channel bed was adjusted. 

According to the experimental results of Haidera (2002), the planform adjustment is a 

response of the channel bed adjustment and the same for other changes. The results also show 

that when the channel bed was modified, the sediment concentration was also modified. The 

variation of sediment concentration was asymptotic to a constant representative value of 

sediment concentration.  

Though much knowledge has been gained about alternate bars from earlier flume studies, 

such as those performed by Chang et al. (1971), Jaeggi (1984), Fujita and Muramoto (1985), 

García and Niño (1993), and Lanzoni (2000) among many contributors to the subject, most of 

the available experimental data were mostly obtained from experiments with loose beds and 

non-erodible banks. Therefore, few experiments of alternate bars formation with loose lateral 

banks are available. Among them, it is worth to mention the works of Schumm and Khan 

(1972), and Federici and Paola (2003). Schumm and Khan (1972) investigated the effect of 

the slope on channel patterns and determined slope ranges that marked significant changes on 

channel pattern. More recently, Federici and Paola (2003), in a set of experiments aimed to 
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analyze the dynamics of channel bifurcations in loose sediments, also show that alternate bars 

formed rapidly in a straight channel initially cut through the cohesionless flat sloping surface 

(1.4%). Just 20 min after the initiation of the experiment, the alternate bars patterns developed 

a sequence of rhythmic bumps on both banks while the stream displayed a tendency to 

meander. 

With the above antecedents, the idea of performing a comparative study to analyze the 

differences between the formation of alternate bars in channels with loose and fixed banks 

was set forward to clarify if is the alternate bar formation that is indeed the preferred evolving 

spatial scale of the problem, delaying the lateral migration of the stream for much longer time 

scales.  

For all the experiments performed for loose and fixed banks we could observe the 

formation of free bars that migrate downstream while growing. As was mentioned before free 

bars can be considered a sort of 2DCS of the evolving bed fed by the interacting turbulent 

flow and the sediment transport along the erodable bed. During the experiments with fixed 

banks from time to time, poorly developed trains of bars formed toward the upstream part of 

the flume, even after steady conditions were achieved. Periods in which a regular train of bars 

was present in almost the entire flume were followed by intervals characterized by a very 

irregular bar topography, in agreement with the findings of Lanzoni (2000). These partially 

formed bars, possibly triggered by random disturbances in the boundary conditions (i.e., mix 

of water+ sediment inflow) and/or by the presence of smaller-scale bed forms. This behaviour 

resembles the theoretical picture outlined be Schielen et al., (1993) which showed that under 

suitable conditions, nonlinear interactions between perturbations of different wavelength 

might cause the periodic alternate bar pattern to become unstable. 

Flow patterns established by the alternating bed topography may erode the banks at the 

wavelength on the initial bed undulations. If bank migration is fast enough, or bar migration 
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slow enough, this systematic erosion of alternate banks should give rise to the regular changes 

in that direction that establish a meander pattern (Whiting and Dietrich, 1993). In many 

channels, however, the time scale of bank erosion may be far longer than that of bar 

migration; consequently, there exists the potential for transient interactions between the 

topography associated with the developing channel curvature and the bathymetric oscillations 

associated with the alternate bars (Whiting and Dietrich, 1993). 

Finally, during the experiments with loose banks was notably absent the presence of 

periodic alternate bars with 10 channel widths separation or less, often viewed as a precursor 

to meander development in agreement with Smith`s (1998) observations. We could conclude 

that for the specific conditions used during the experiments the formation of alternate bars 

was the preferred evolving spatial scale of the problem, delaying the riverbank erosion 

processes, and consequently, the lateral migration of the stream for much longer time scales. 
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CHAPTER 5 Conclusions 

 

 

 

 

The impact of morphology on turbulent processes is often simplified to a local boundary 

condition and rarely the impact of large morphological units is considered. There is an 

obvious gap between the small turbulent scales and the large scales of the flow structure that 

in turn may induce typical morphological scales. This thesis was an attempt to bridge in part 

that gap, seeking to understand the role of some typical spatial scales that characterizes the 

behaviour of a shallow turbulent flow. 

In brief, this thesis combined the experience gained at two different experimental facilities: 

the first with broad experimental basin available at the Hydraulic Laboratory of the 

Engineering and Water Resources Department (FICH) of UNL, in Santa Fe, Argentina, and 

the second with the large sand box available at the School of Engineering and Geosciences of 

Newcastle University, in Newcastle upon Tyne, UK. Consequently, the objective of this thesis 

was also twofold: on one hand, to investigate the spectral response of a shallow turbulent flow 

as approaches an opening of a supposedly relief bridge, with a local scour hole located at the 

contraction end of an otherwise flat bed; on the other hand, and because the complex 

behaviour of sand bars still attracts the interest of the scientific and engineering community, 

an experimental investigation on the formation of free bars with fixed and loose banks 

interaction with a shallow turbulent flow has been proposed. 

What do they have in common? Firstly, spectral segregation of turbulent energy between 

horizontal in the form of horizontal 2DCS –two-dimensional coherent structures– and much 
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smaller vertical structures is indeed possible. Secondly, free bars can be considered a sort of 

2DCS driven by the interacting turbulent flow with the sediment transport along the erodible 

bed. 

For the first case, it has been established that the geometrical and topographical forcing 

gives rise to an energy spectrum with two well-differentiated peaks. This spectral segregation 

represents quasi two-dimensional turbulent motion for the large-scale l1, and three-

dimensional turbulent motion for the small-scale l2, respectively. The phenomenological 

estimate obtained for the separation of scales satisfies F12 C~/ ll (within the bounds of the 

shallow water theory). The flow turbulent energy initially stored at scales 5~/ hlo  is 

transferred to much larger scales by the geometrical forcing through an inverse cascade 

process. On the other hand, the topographical forcing, which only acts locally, produces a 

large amount of turbulent kinetic energy concentrated at small-scales by trapping and exciting 

flow modes due to the shape of the “submerged” scour hole. The bed topography injects a 

large amount of small-scale turbulence into the flow, which is diffused toward larger scales by 

another inverse process. 

For the second case, free-bars experiments were carried out in a flume 22m long, 2.5m 

wide, and 0.6m deep, filled with uniform sand. These experiments included 4 inbank flow 

condition with fixed banks, and 4 with loose banks for identical discharges, initial cross 

section and bed slope. These experimental series provided an opportunity to compare the 

response the alternate bars for both fixed and loose banks. The experimental programme was 

designed to extend the alluvial channels database to test existing theories and methods; and to 

investigate the causes of discrepancy between predicted and measured channel dimensions. 

Additionally, a stability analysis supporting the alternate bar formation process was included 

in the Appendix C. For all the experiments performed for loose and fixed banks the formation 

of free bars that migrate downstream while growing was consistently observed. As it was 
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mentioned before free bars can be considered a sort of 2DCS of the evolving bed fed by the 

interacting turbulent flow and the sediment transport along the erodable bed. During the 

experiments with fixed banks, poorly developed train of bars formed toward the upstream part 

of the flume from time to time, even after steady conditions were achieved. Periods with a 

regular train of bars was present in almost the entire flume were followed by intervals 

characterized by a very irregular bar topography, in agreement with the findings of Lanzoni 

(2000). These partially formed bars, possibly triggered by random disturbances in the 

boundary conditions (i.e., mix of water + sediment inflow) and/or by the presence of smaller-

scale bed forms. This behaviour resembles the theoretical picture outlined be Schielen et al. 

(1993) which showed that under suitable conditions, nonlinear interactions between 

perturbations of different wavelength might cause the periodic alternate bar pattern to become 

unstable. 

Flow patterns established by the alternating bed topography may erode the banks at the 

wavelength on the initial bed undulations. If bank migration is fast enough, or bar migration 

slow enough, this systematic erosion of alternate banks should give rise to the regular changes 

in that direction that establish a meander pattern (Whiting and Dietrich, 1993). In many 

channels, however, the time scale of bank erosion may be far longer than that of bar 

migration; consequently, there exists the potential for transient interactions between the 

topography associated with the developing channel curvature and the bathymetric oscillations 

associated with the alternate bars (Whiting and Dietrich, 1993). 

Finally, during the experiments with loose banks the presence of periodic alternate bars 

with 10 channel widths separation or less was notably absent, often viewed as a precursor to 

meander development in agreement with Smith´s (1998) observations. We could conclude 

that for the specific conditions used during the experiments the formation of alternate bars 
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was the preferred evolving spatial scale of the problem, delaying the riverbank erosion 

processes, and consequently, the lateral migration of the stream for much longer time scales. 

As was mentioned before, the impact of morphology on turbulent processes is often 

simplified to a local boundary condition and rarely the impact of large morphological units is 

considered. There is an obvious gap between the small turbulent scales and the large 

scales of the flow structure that in turn may induce typical morphological scales. This 

thesis is an attempt to bridge in part the gap, seeking a deeper understanding of which and 

how some typical length scales characterizes the behaviour of a shallow turbulent flow. 
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Appendix A  Normal Flow Solution 

 

 

 

 

The response to a sudden increase in momentum applied at the inlet position, 0X = , can 

be computed from Equation (1.11) 
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where 2/2
iU is the required amount of kinetic energy to be added at 0X = , per unit of mass, 

to increase the flow velocity from its normal magnitude U0 to 0 0U U+ ∆ . Changing now 2U  

for Y, the above equation reduces to the linear ordinary differential equation 
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The above equation is based upon the assumption that the sudden increase in momentum 

affects the velocity field only; leaving the water depth H0 unchanged (normal flow). Using 

now the Laplace transform 
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the governing equation transform to 
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Whose solution, after transforming back to ( )U X , is 

0F /C222
0

2 )( HX

i eUUXU
−+=  (A.5) 

The resulting flow velocity at the inlet allows to determine the required impulse, since 

( ) 0 00U U U= + ∆ , 

( ) 22
0

2
00 iUUUU +=∆+  (A.6) 

It follows that ( ) 000
2
0

2
00

2 /,2 UUUUUUU i ∆=δδ+δ= , and the variation of flow velocity 

with distance is finally given by 

( ) 0F /C22
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For numerical reasons it is convenient to introduce a slow geometric variation in the 

channel width along the streamwise direction to accommodate the sudden momentum influx 

at 0X = , which amounts to some addition of mass, required to increase the flow velocity 

without changing the water depth, 0 :H H const= . 
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where B0 is the channel width at 0X = . The channel width variation is indeed slow enough to 

render the above solution valid since change in momentum in lateral direction can be safely 

neglected. Last but not least, the normal flow solution given by Eq. (1.14) can be posed in 

dimensionless form as 

F

02
0 C

S
F =  (A.9) 

that reflects the exact balance between gravity and friction, whereas an increase in bed slope 

tend to accelerate the flow, and increase in bed hydraulic resistance will have the opposite 

effect. Here, 000 /F gHU= is the Froude number. A numerical experiment of this sort was 

considered by Tassi and Vionnet (2002) using three different computational engines with 
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excellent agreement with the exact solution, showing that the expected behavior described by 

Eq.(A.7) could indeed be achieved in practical situations. 

The sudden increase in momentum influx at the inlet can be considered effectively extinct 

whenever the exponential factor in Eq.(A.7) attains the value π−2e ( 0.002≈ , Batchelor (1969)). 

Under this assumption the effective distance L that the flow must undergo to reestablish the 

balance between gravity and friction is  

F0 C/HL π≈  (A.10) 

The following figure exhibits the solution behavior under an inflow perturbation equivalent 

to 50% of the base flow, 5.00 =δU . For completeness and/or later comparison with 

numerical solutions, other data used to generate the plot where FC 0.01= , and 0 0.2F = . 
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Figure A.1 Solution behavior under an inflow perturbation 0/B B  is not to scale 
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Appendix B Sieve Analysis Of The Bed Material 

 

 

 

 

Previous research by Babaeyan-Koopaei (1996) and Shakir (1992) reported that the sand 

d50 equals 1.0mm with a very uniform grading. Haidera (2002) has reported d50 equals 

0.97mm. The characteristics of the sand in the flume were checked before running any 

experiments. The sand in the flume was sampled and analysed in 3 locations (upstream, 

middle, and downstream reach). The result of the sieve analysis (according on BS 1377, Part 

2, 1990) is shown in Figure B.1. As can be seen, there is no significant difference between 

these three samples. According to the sieve analysis, it was found that 90 1.19d = mm, 

84 1.13d = mm, 60 1.01d =  mm, 50 0.94d = mm, 35 0.84d = mm, 16 0.70d = mm, and 10 0.66d = mm. 

The grain standard deviation was determined as ( ) 27.15.0
1684 == ddgσ . The coefficient of 

uniformity was determined as 53.11060 == ddCu ; and the coefficient of curvature was 

determined as ( ) 96.0)( 6010
2

30 =×= dddCc . 
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Figure B.1 Sieve analysis curves of the used sand 
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Appendix C Stability Analysis Of 2d Coherent Structures Of 

Shallow Waters. 

 

 

 

 

C.1 Introduction 

 
Bars are an essential large-scale feature of river topography, as is been well established 

before. They consist of the repetitive sequences of scour holes and depositional diagonal 

fronts, with planimetric scale in the magnitude order of the channel width. These structures 

are often organized in the simplest pattern typical of alternate bars. Nevertheless, in wider 

reaches more complicate transverse topographic expressions frequently occur, like central or 

multiple bars. The increasing interest in alternate bars has mainly originated from practical 

motivations. The possibility of predicting and preventing processes like bedforms 

development in rivers, their migration and interaction with structures and navigation, bank 

failures and channel shift, are some of the issues to deal with, in river control and hazard 

prevention. 

After three decades of research on fluvial bedforms, enlightened by the seminal 

contribution of Kennedy (1963), most scientist today agree that, in the absence of forcing 

mechanisms, sand-wave development is a problem of instability. The formation of river bars 

has been conclusively explained in terms of an inherent instability of erodible beds subject to 

a turbulent flow in almost straight channels, which leads to the spontaneous development of 

bottom perturbations (free bars) migrating downstream. Furthermore, the occurrence of a 
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given transverse configuration has been often interpreted as the result of the dominance of an 

associated transverse mode of the Fourier representation of bed elevation (Parker, 1976).  

C.2 Governing equation 

 
Following the standard viewpoint of hydrodynamics instability, free bars formation is 

generally investigated by seeking the conditions under which the change in flow pattern and 

sediment transport induced by a slight perturbation of bottom topography, with respect to the 

plane configuration, leads to the amplification of bed perturbation. Implicit in this procedure 

is the assumption, based on experimental observations, that the time scale of bed change 

(amplification and migration) is much larger that the flow time scale, which implies that a 

quasi steady approach can be used for the flow. 

Let concentrate ourselves on a still fairly idealized model of bars formation: a laboratory 

experiment performed under steady flow conditions, with no sediment transport in suspension 

and uniform grain size distribution. This analysis requires a suitable description of the flow 

field in an infinitely long straight channel, with constant width, which is assumed to be large 

enough to justify the adoption of a shallow water approximation. Consequently, assuming a 

flowing layer of water bounded from above by a free surface free of wind effects and from 

below by a smooth albeit slowly erodible bottom, and if the vertical extent of the flowing 

layer, oH , is small in comparison with the horizontal length of the wavelike motion of the 

fluid, oL  (i.e., if / 1o oH L ≪ ), the motion can be analyzed by a horizontal 2-D formulation 

known as the long wave approximation, where small-scale effects are supposed to act as an 

effective eddy viscosity on the large-scale motion (Carrasco and Vionnet, 2004), The latter 

approach implies that the vertical accelerations are negligible compared with gravity. 
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Figure C.1 Reference system 

 
Then, and with reference to Figure C.1, the resulting set of governing equations written in 

non-conservative form can be obtained from the depth-integrated form of the Navier-Stokes 

equations of motion, previously averaged over turbulence: 
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(C.1) 

(C.2) 

(C.3) 

where ( ),U VU =  is the depth-average velocity in the ( ),X Y  directions, T is the time, Zs and 

Zb are the free-surface and bed level perturbations respectively, with respect to the 

undisturbed or mean water depth Ho, ( )/ , /X Y∇ = ∂ ∂ ∂ ∂  is the gradient operator, g is the 

acceleration due to gravity, ρ  is the fluid density, and η ηo oS X= −ɶ  gives the unperturbed 

channel bottom elevation with respect to some datum, being So the longitudinal uniform 

slope. The erodible bottom is assumed to vary slowly so that the quasi-steady flow field can 

be considered to adapt instantaneously to changes in bottom configuration. Three additional 

relationship must be provided to close the problem: (i) the bed resistance, ( , )
X YB B BT T=T , (ii) 
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the eddy viscosity νt , and (iii) the sediment flow rate ( , )
X YB B BS S=S . For the former, the 

classical squared function dependency on the depth-averaged velocity is used:  

2 2
F( , ) ρC ( , ) , ,

X YB B BT T U V U V= = = +T U U  
(C.4) 

where the friction coefficient FC  is specified with the Keulegan relation  
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(C.5) 

Furthermore, CF is the local friction coefficient for which several empirical relationships 

are available in the literature. sk  represents an effective roughness height, usually 

proportional to the particle size for flat bottom, or modified according to Van Rijn (1984) 

approach for the case of dunes-covered bed, and *U  denotes the shear velocity. 

The classical depth-averaged estimate for the second closure relation is given by 

Fν Ct oUHκ= , with κ the Von Karman constant (Uijttewaal and Jirka, 2003). In-channel 

values for the SWE are given by Vionnet et al. (2004). To begin with, in this work the limit 

case for what the viscosity can be ignored (ν 0)t →  is considered first. 

Finally, for the volumetric sediment flux SB it is well establish that the average bedload 

motion in case of uniform plane turbulent flows is aligned with the average flow, and its 

intensity is a monotonically increasing function of the excess of bed shear stress TB, for which 

various empirical relationships have been proposed of the form  

( )
�

,
1 C

N

B B B U U

a

n
= − =

−
U

S T T e e
U

⌢

 
(C.6) 

Here, n is the porosity of the noncohesive bed material, typically about 0.4, a
⌢
 and N

⌢
 are 

empirical constants, and 
CB

T  is the threshold value of bed shear stress below which there is no 
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particle motion on the bed. In this work, it is assumed that the bed shear stress is well above 

critical conditions but not as intense as to entrain particles into suspension, so only bedload 

mode of transport such as saltation, rolling or even sliding of particles occur within a thin bed 

interface of typical thickness of the order of 2D-3D.  In addition, if it is further assumed that 

the bedload transport will reduce its intensity to account for an uphill slope ahead, and 

conversely, the above relation becomes after some elementary manipulation (Engelund and 

Skovgaard, 1973; Schielen et al., 1993) 

σ γ ,
N

B bZ
 
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 

U
S U

U
 

(C.7) 

where ( )Fσ ρ C /1a n= −
⌢

 and 2N N= ɶ . Many transport formulae are of this type, see the 

review in van Rijn (1989). Note that we omit the effect of secondary flow on the direction of 

the sediment transport. To include such effect, the usual empirical approach taken by most 

authors (Struiskma et al., 1985; Colombini et al., 1987; Johannesson and Parker, 1989; 

Lanzoni and Tubino, 1999; Federici and Seminara, 2003; Hall, 2004) can be summarized as 

follow  

3

2
3/ 2

( , ) (cosδ,sin δ) ,
( 1)

8(τ τ ) , τ
( 1)

X YB B

c

S S
s gD

U

s gD

∗
∗ ∗ ∗

Φ
=

−

Φ = − =
−

 
(C.8) 

(C.9) 

In the above equations, s is the relative density of sediments and equal to ρ / ρ 1s − , Φ is the 

dimensionless bedload transport formula of Meyer-Peter and Müller (1948), τ∗  is the 

dimensionless bed shear stress (Shields parameter), and δ  is the angle made by the direction 

of the bedload transport with the longitudinal direction. Talmon et al. (1995) suggest a 

prediction for δ  that can be read as  
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being r an empirical constant ranging between 0.5 0.6− . 

C.3 Boundary conditions  

Considering now a straight channel with erodible bed and fixed lateral banks, of width 2B, 

the differential system (C.1)-(C.3) with the given closure relationships must be solved subject 

to boundary conditions of vanishing fluid and sediment fluxes through the side walls of the 

channel and at the free surface, hence  

0 , 0 on
YB

V S Y B= = = ±  
(C.11) 

C.4 Base flow and dimensionless form 

The above set of equations admits a simple solution given by a uniform flow ( ,0)o oU=U  

on a straight channel with constant water depth oH  and slope oS . According to the first 

relationship, the equilibrium sediment discharge will be σ
o

N

B oS U= . Therefore, it is rather 

straightforward to end up with the following dimensionless form of the governing equations 

(See Appendix D). 
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(C.13) 

(C.14) 

where the dimensional quantities have been made dimensionless employing the scales 

dictated by the base flow  
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Once the problem is cast in dimensionless form and is supplemented by the required 

closure assumptions, three dimensionless parameters arise, namely the aspect ratio β / oB H=  

already defined, the ratio between the hydrodynamic flow and sediment flow rate, 

/
oB o oS U H∈= , and the Froude number 2 2 / / C

oo o o o FF U gH S= = . Consequently, after filtered 

the fast flow response and taking the limit 0∈→ , the governing equations reduce to the 

system given above. 

C.5 Linear stability analysis 

It is now possible to investigate the linear response of the flow to infinitesimal 

perturbations. Therefore, if the base state is perturb by linear infinitesimal perturbations with 

amplitudes of the kind 

( ), , , η ou v h ′≡ = +φ φ φφ φ φφ φ φφ φ φ  
(C.16) 

Then, linearizing by neglecting nonlinear terms, it is possible to obtain the following 

reduced system (see Appendix E), which can be symbolically written as a matrix as ′ =L 0φφφφ   
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(C.17) 

Seeking the solution of this initial-value problem in the form of travelling waves of the 

form  

( ω )( )ei kx ty −′ = fφφφφ  
(C.18) 
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where k is the wavenumber, ω the complex frequency and ( )yf  the vector with the amplitude 

of the perturbations ( , , ζ,ξ)u v=
⌢ ⌢ ⌢ ⌢

, it is possible to obtain the following fourth-order differential 

linear equation for the bed perturbation after using Gaussian elimination (see Appendix F) 
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d d
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(C.19) 

Subject to the following boundary conditions  

3

3

ξ ξ
0, 0 1

d d
on y

dy dy
= = = ±

⌢ ⌢

, 
(C.20) 

the first derivate is from apply non-slip on the bottom, and the thirds if from choose a 

symmetry criteria. 

The above coefficients are given by  

2i= − γa  (C.21) 

( ) 23 3 3ok N S ik= β − − γ − γb
 (C.22) 

( )( )3 3 ok N S ik= β+ γ −c
 

(C.23) 

( )3 ok i S k= β − β −d
 (C.24) 

The linear differential equation for ξ
⌢
 represents a typical Sturm-Louville or eigenvalue 

problem, which admits solutions of the form µξ e yA=
⌢

. Therefore, its characteristic equation 

reduces to  

( ) ( )4 2µ 2ω µ ω 0+ + + + =a b c d  (C.25) 

which is an algebraic equation quadratic in µ  with roots 1,2 1,2µ µ , ν ν= ± = ± . The solution 

to (C.19) then reads  
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µ µ ν νξ e e e ey y y yA B C D− −= + + +
⌢

. (C.26) 

After applying the boundary conditions, the requirement of obtaining non-trivial solutions 

leads to  

( ) ( ) ( )( )2 22 2 2ν 2 2 2ν µ 0e e e e− ν µ − µν −µ ν +µ − + − =  (C.27) 

or 

sinh sinh 0ν µ =  (C.28) 

If both roots ν and µ are complex (purely imaginary) then sinh siniz i z= . So, µ = ν  must 

have the form of i mπ , for 1, 2, 3,...m = ± . The associated eingenvalues of this problem is  

cos
( , , , ) :

sin

y

im y

y

m ye
u v e

m ye

±µ
π

±ν

 π
ζ ξ ⇒ = 

π

⌢ ⌢ ⌢ ⌢
. (C.29) 

Therefore, the wave-like solutions of the linearized problem should be of the form  

( )( , , , ) ( , , , ) i kx m y tu v u v e + π −ω′ ′ ζ ξ = ζ ξ
⌢ ⌢ ⌢ ⌢

 (C.30) 

with ( , , , ) :u v ζ ξ
⌢ ⌢ ⌢ ⌢

 arbitrary constant complex numbers in which the absolute value gives the 

amplitude and the modulus the phase of the perturbation, 1i = − , ω is the wavenumber in 

lateral direction and k is a complex wavenumber in longitudinal direction. The imaginary part 

of k describes the development of the amplitude of the perturbation in the flow direction. By 

back substitution into the four algebraic equations relating the amplitudes of the perturbation 

(A.17) it is possible to recover the vector ( )yf  (see Appendix G). 

Finally, the frequency ω is related to the wavenumber k by the dispersion relation 

( ;...)kω = ω , whose real and imaginary parts are  
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( )

2 2

2 2

r

i

AC BD

C D

i CB AD

C D

+
ω =

+

−
ω =

+

 
(C.31) 

(C.32) 

where  

( ) ( )( ) ( )( )( )( )( )4 2 2 2 2 4 2 2 2 2 2 2 24 1 4 3 2o o o oA F Nk m S k F M m F M k m= π + π + γ + − + π γ + − − π β  (C.33) 

( )( ) ( ) ( ) ( )2 2 2 3 2 2 2 5 2 3 2 2 2 4 4 23 3 1 2B k M k m S Nk m k NM N M S k F k m F km F
o o o o o

    = γ + − − π − + π + − − β + − + π − − π γ        
 (C.34) 

( ) ( )( )2 3 3 2 2 2 2
0 03 1oC M kS k F km F= + β + − + π β  (C.35) 

( )( )( )2 2 2 2 24 1 2o oD k F M m S= + − − π β  (C.36) 

It is obvious from (A.30) that the stability of the basic state is determined by the imaginary 

part of ω. If the imaginary part iω  of ω is smaller than 0, perturbation like (A.30) decay 

exponentially in time, i.e. the basic state is stable. Accordingly, if iω  is greater than zero, we 

are dealing with exponentially growing solutions, i.e. an unstable basic state. Hence, 0iω = , 

the so-called neutral curve, is a boundary between the exponentially growing and decaying 

solutions of the linear problem. Aditionally, iω  will represent the rate of growth, and rω the 

migration speed of the perturbation of the alternate bar type. 

The dispersion relations ω  are functions of different variables that has been organized in 

two big groups depending of their characteristics as followed: (i) Variables that describe the 

channel properties:  Fo, Froude number of the undisturbed flow; So, bed slope; CF, local 

friction coefficient; and sk , effective roughness height. (ii) Variables that describe the 

disturbance properties like k, dimensionless wavenumber and m, parameter that quantify how 

many rows will characterize the perturbation. For 1=m , bars give rise to a weakly 
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meandering pattern of the thalweg, whereas for 2≥m , a submerged braiding pattern 

develops. An example of the neutral curves obtained for the simplify solution is presented in 

Figure C.2, using λ and β as variables ( )k = λ . When comparing the neutral curve obtained 

with our analysis with those ones presented in the general literature, see Figure 4.8, 

(Colombini et al., (1987), Garcia and Niño (1993)) we found that besides the curve general 

shape is similar to the literature, ours are out of scale.  

 

Figure C.2 Calculated Stability Diagram 
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Appendix D Dimensionless procedure of the governing equations 

 

 

 

 

It is possible to obtain the dimensionless form of the governing equation (C.1)-(C.3) using 

the dimensional quantities dictated by the base flow and shown in (C.15). 

Introducing dimensional quantities the continuity equation takes the form of  

0o o o o

o o

H U H Uh
h

B t B

∂
+ ∇⋅ =

∂
u  (D.37) 

Simplifying:  

0
h

h
t

∂
+∇⋅ =

∂
u . (D.38) 

Working now with the momentum equation and taking the limit case ν 0t →  we have  

( )
2 2 2

FC τ
ζ 1,0o o o o B

o

o o o o

U U H Uu
g gS

B t B B H h

∂
+ ⋅∇ + ∇ = −

∂
u u . (D.39) 

Multiplying for 
2
o

o

B

U
  

( )2
F2

τ
ζ 1,0 βC

o

o B
o o

o

Bu
F gS

t U h

−∂
+ ⋅∇ + ∇ = −

∂
u u  (D.40) 

if  

2

FC o

o
o

o

U
gS

H
=  (D.41) 

then, the momentum equation after take common factor is  

( )2
F

τ
ζ βC 1,0 B

o

u
F

t h

−∂  + ⋅∇ + ∇ = − ∂  
u u  (D.42) 
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If now we multiply for 2
oF  the equation will be  

( )2 τ
ζ β 1,0 B

o o

u
F S

t h

∂   + ⋅∇ +∇ = −   ∂   
u u  (D.43) 

taking in account that 2
FC oo oS F= . 

Finally the transport equation has the form  

1 ζ
0B

t

∂
+∇⋅ =

∈ ∂
s  (D.44) 

where /
oB o oS U H∈=  is the ratio between the hydrodynamic flow and sediment flow rate. 

The dimensionless time t represents the fast time scale, or the fast flow response, which 

was filtered by making the substitution, τ ,t=∈  then .t∂ →∈∂τ  In this case, τ  represents the 

slow time scale, or morphological time response. Consequently, after substitution of t by τ  

and taking the limit 0∈→ , the governing equations reduce to the system  

( )2

0

ζ β 1,0

ξ γ
0 , ξ

τ β

B
o o

N

B B

h

F S
h

∇⋅ =

 ⋅∇ +∇ = − 
 

 ∂
+∇ ⋅ = = − ∇  ∂  

u

u u

u
s s u

u

ττττ
 

(D.45) 

(D.46) 

(D.47) 
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Appendix E  The perturbed equation of motion. 

 

 

 

 

The balance equations for the basic state are perturbed by linear infinitesimal perturbations 

of the form 

( )

( )

1,0

1 ζ ξ

1

τ 1,0 τB B

h

h

′= +

= + −

′= +

′= +

u u

 

(E.1) 

(E.2) 

(E.3) 

The perturbations are substitute into the dimensionless governing differential system with 

associated closure relationships and boundary conditions and the problem is linearised. The 

continuity equations will read 

( ) ( )( )1 1,0 0h ′ ′∇ ⋅ + + = u  (E.4) 

After the linearization process it is possible to obtain  

0x x yh u v′ ′ ′+ + =  (E.5) 

The momentum equation will take the form  

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( )

2

2

τ 1,0
1,0 1,0 ζ β 1,0

1

1,0 1,0 ζ β ,0 τ

B

o o

o o B

F S
h

F S h

′ +
 ′ ′+ ⋅∇ + +∇ = −   ′+ 

 ′ ′ ′ ′ + ⋅∇ + +∇ = −  

u u

u u

 
(E.6) 

(E.7) 

The momentum equation can be express in ( ),x y  coordinates, where 

1

2

2

2

τ
: ζ β β

τ
: v ζ β

B

o x x o o

B

o x y o

x F u S S
h

y F S
h

′ + = −

′ + = −

 
(E.8) 

(E.9) 

aside  
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( )

( )( )( )

τ 1,0τ

1

τ 1,0 1

BB

B

h h

h

′ +
=

′+
′ ′= + −

 (E.10) 

Thus, 
1

τB will take the form of 
1 1

τ τ 1B B h′ ′= + −  (E.11) 

and 
2

τB  will be 
2 2

τ τB B
′=  (E.12) 

Substituting (C.11) and (C.12) into (E.8) and (E.9)  

( )
1

2

2

2

: ζ β τ

: ζ β τ

o x x o B

o x y o B

x F u S h

y F v S

′ ′ ′+ = +

′ ′+ = −
 

(E.13) 

(E.14) 

It is necessary now to take a closer look at the tension term  

Fτ ρCB = u u  (E.15) 

with 

F FC C H=  (E.16) 

Using a Taylor series the tension can be expressed as  

( ) ( )0 F

F 0

τ τC
τ τ

C
i i

i

B B o

B B o j j

j

d
H H U U

dH U

∂ ∂ 
= + − + − ∂ ∂ 

 (E.17) 

where ( )oH H H ′− = , and o

j j jU U U ′− = . 

Working with the derivates 

( )

3 / 2

1

FF

0

1/ 22 2
F

CC
5

τ ρC

o

o

B

d

dH H

U U V

  = − 
 

= +

 
 

(E.18) 

1 2

F 0

τ
ρ

C
B

oU
∂ 

= ∂ 
 (E.189) 
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1 1

2 2

2 2

F F2 2
0

F 2 2
0

τ τ2
ρC      ;      2ρC

τ τ
ρC      ;      0

o

B B

o

B B

U V
U

U UU V

UV

V VU V

∂ ∂ +
= = ∂ ∂+  

∂ ∂ 
= = ∂ ∂+  

 (E.20) 

( )
2

1/ 22 2
Fτ ρCB V U V= +  (E.191) 

2

F 0

τ
0

C
B∂ 

= ∂ 
 (E.22) 

2
τ

0B

U

∂
=

∂
 (E23) 

2

F

τ
ρC

o

B

oU
V

∂
=

∂
 (E.24) 

Finally, substituting all derivates and dividing by 
oB

T  it is possible to obtain  

1 1

2 2

τ 1 2 ; τ 2

τ ; τ

B B

B B

Mh u u Mh

v v

′ ′ ′ ′ ′= − + = −

′ ′ ′= =
 (E.25) 

where F5 C
o

M = − . 

Introducing the new definitions of 
1, 2

τB  in the momentum equations, it will take the form  

( ) ( )( ) ( )

( )

2

2

: 2β β 1 ζ β 1 ξ 0

: β ζ 0

o x o x o o

o x o y

x F S u S M S M

y F S v

′∂ + + ∂ − + + + =

′∂ + + ∂ =
 

(E.26) 

(E.27) 

It is time to work with the transport equation 

( )

ξ
0

, ,ξ ,ξ

B

B B x yu v

τ
∂

+∇⋅ =
∂

=

s

s s

 
(E.28) 

(E.29) 

using series and taking derivates in the way 
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( ) ( )( ) γ
1 1 1 ξ

β

γ
1 ξ

β

xB x

x

Nu u u

Nu

 
′ ′ ′= + + − − 

 

′= + −

s

 (E.30) 

γ
ξ

β
xB

x xxNu
x

∂
′= −

∂

s
 (E.31) 

( ) ( ) γ
1 1 ξ

β

γ
ξ

β

yB y

y

Nu v u

v

 
′ ′ ′= + − − 

 

′= −

s

 (E.32) 

γ
ξ

β
yB

y yyv
y

∂
′= −

∂

s
 (E.33) 

will lead to  

( )ξ γ
ξ ξ 0

τ βx y xx yyNu v
∂

′ ′+ + − + =
∂

 (E.34) 

Finally, grouping and rearrangement the linealised and dimensionless governing equations  

( ) ( )( ) ( )

( )

( )

2

2

2β β 1 ζ β 1 ξ 0

β ζ 0

ζ ξ 0

γ
ξ 0

τ β

o x o x o o

o x o y

x y x x

x y xx yy

F S u S M S M

F S v

u v

N u v

′∂ + + ∂ − + + + =

′∂ + + ∂ =

′ ′∂ + ∂ + ∂ −∂ =

 ∂′ ′∂ + ∂ + − ∂ + ∂ = ∂ 

 

(E.35) 

(E.36) 

(E.37) 

(E.38) 
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Appendix F  Normal modes and gaussian elimination 

 

 

 

 

The postulated solution is assumed to be given by  

⌢

( )

( )

( )

( )

i kx t

i kx t

i kx t

i kx t

u ue

v ve

e

e

ω

ω

ω

ω

ζ ζ

ξ ξ

−

−

−

−

′ =

′ =

′ =

′ =

⌢

⌢

⌢

 

(F.1) 

(F.2) 

(F.3) 

(F.4) 

where the ( ) ( , , ζ,ξ)y u v=f
⌢ ⌢ ⌢ ⌢

 is a complex number in which the absolute value gives the 

amplitude and the modulus the phase of the perturbation, 1i = − .  

Introducing the solution and their derivates in the system, making rigid-lid 

approximation ( 0)oF → , ignoring any variation on the hydraulic resistance 

coefficient ( )F/ CBM T= ∂ ∂ , calling D
y

∂
=

∂
 and expressing the system as a matrix, we obtain 

( )2 2

2 0 0
0 0 0

0

0 0

o o o

o

S ik S S u

S D v

ik D ik ik

Nik D i D k
γ
β

 β −β β   
    β     =  −  ζ    − ω− +     ξ   

⌢

⌢

⌢

⌢

 

 

(F.5) 

Performing now a Gaussian elimination over the coefficients matrix it is possible to obtain 

( ) ( ) ( )
( )

( )

2 2
0

2 2
2 20 0

1 1

2 3 2 2 2 2 2 2 3 4 2 43 3 2 3 3 3 2
0 0 0

2 2

ik D ik ik

i D k iNk
D DN iNk

D D N i S Nk S
o o i D k iNk

D N D N

kD N k N kD kD S D i kS i k D S k i D k ik S
o o o o

D D N i S Nk k
o

 −
 
 − ωβ−γ +γ + β − −

β 
 

− + β 
− − ωβ−γ +γ + β 

− − 
 
 − β +β − β − β γ+ ωβ − β ω+ γ + β γ − γ −βω − γ
 
 − + β 

ˆ 0
ˆ 0
ˆ 0
ˆ 0

u
v

   
   
  =  ζ   
 ξ   



 (F.6) 
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The last element of the matrix will give us the solution to ξ̂   

( )2 3 2 2 2 2 2 2 3 4 2 4 ˆ3 3 2 3 3 3 2 0kD N k N kD kD S D i kS i k D S k i D k ik
o o o

β +β − β − β γ+ ωβ − β ω+ γ + β γ − γ −βω − γ ξ =  (F.7) 

After some algebraic arrangements will look like 

( )( )2 2 3 4 3 2 2 ˆ2 4 2 3 3 3 3 3 0o o oi D kN k kS i k D k N ik k S i kS k− γ + β + ωβ− β − β γ + γ + β− γ + β − β ω− ωβ ξ =

 
(F.8) 

If we name 

2i= − γa  (F.9) 

( ) 23 3 3ok N S ik= β − − γ − γb  (F.10) 

( )( )3 3 ok N S ik= β+ γ −c  (F.11) 

( )3 ok i S k= β − β −d  (F.12) 

we will have a fourth-order differential linear equation for the bed perturbation (C.19). 
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Appendix G  Recovering of the amplitude vector ( )yf  

 

 

Is been prove that the wave-like solutions should be of the form 

( )( , , , ) ( , , , ) i kx m y tu v u v e + π −ω′ ′ ζ ξ = ζ ξ
⌢ ⌢ ⌢ ⌢

 (G.1) 

where ( ), , ,u v ζ ξ
⌢ ⌢ ⌢ ⌢

  are arbitrary constants amplitudes. 

Introducing the obtained solution and their derivates in the system (A.17) and expressing 

the system as a matrix, it reads 

( )

2

2

2 2 2

2 0 (1 ) (1 ) 0
0 0 0

0

00

o o o o

o o

uF ik S ik S M S M

F ik S im v

ik im ik ik

ikN im m k i
γ
β

  + β −β + β +  
    +β π     =  π −  ζ    
 π − − π − − ω   ξ   

⌢

⌢

⌢

⌢

 

(G.2) 

(G.3) 

(G.4) 

(G.5) 

The requirement to non-trivial solutions leads to obtain the determinant of the matrix 

coefficients and equal it to zero to obtain the dispersion relation. After some algebraic work 

the determinant reads  

( ) 0C iD A iB+ ω− − =  (G.6) 

where A, B, C and D are expressed in the way of 

( ) ( )( ) ( )( )( )( )( )4 2 2 2 2 4 2 2 2 2 2 2 24 1 4 3 2o o o oA F Nk m S k F M m F M k m= π + π + γ + − + π γ + − − π β  (G.7) 

( )( ) ( ) ( ) ( )2 2 2 3 2 2 2 5 2 3 2 2 2 4 4 23 3 1 2B k M k m S Nk m k NM N M S k F k m F km F
o o o o o

    = γ + − − π − + π + − − β + − + π − − π γ        
 (G.8) 

( ) ( )( )2 3 3 2 2 2 2
0 03 1oC M kS k F km F= + β + − + π β  (G.9) 

( )( )( )2 2 2 2 24 1 2o oD k F M m S= + − − π β  (G.10) 

Making possible to obtain the dispersion relationships as 
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( )

2 2

2 2i

AC BD

C D

i CB AD

C D

+
ω =

+

−
ω =

+

 (G.11) 

 

 


