La producción ganadera de rumiantes en sistemas de pastoreo es una actividad importante en la región. Los niveles de productividad dependen de las dietas adecuadas de los animales, en calidad y cantidad, para satisfacer sus necesidades diarias. En este contexto, el estudio del comportamiento ingestivo y la estimación del consumo de rumiantes de pastoreo es extremadamente útil ya que permite obtener indicadores del estado nutricional, la salud y el bienestar animal. En consecuencia, la medición precisa y rápida del comportamiento de pastoreo y el consumo de forraje permite mejorar la eficiencia de la gestión de los recursos hídricos y alimentarios. En este marco, el uso de algoritmos de procesamiento inteligente de señales que permitan extraer la información relevante de registros sonoros de rumiantes se presenta como una opción válida para predecir el consumo de forraje de rumiantes en condiciones de pastoreo. Más aún, teniendo en cuenta también que debe ser un método sencillo desde el punto de vista tecnológico y que además no perturbe el comportamiento natural del animal. En esta tesis se utilizaron dos tipos de redes neuronales artificiales (ELM: máquinas de aprendizaje extremo y MLP: perceptrón multicapa), ambas actuando como modelos de regresión no lineal multivariada, para estimar el consumo de materia seca en ovejas. En todos los casos se utilizó la metodología de validación de "dejar uno afuera". Los resultados obtenidos con las redes neuronales muestran que las ELM presentan una significativa mejora respecto del modelo lineal y al MLP para iguales condiciones de validación.
Livestock production by ruminants in grazing systems is an important activity in the region. The productivity levels depends on adequate animals diets, in quality and quantity to meet their daily nutritional requirements. In this context, the study of the ingestive behavior and the estimation of the intake of grazing ruminant is extremely useful since it allows to obtain indicators of nutritional status, health and animal welfare. Consequently, the accurate and rapid measurement of grazing behavior and forage intake allows to improve the efficiency of herd and food resources managements. In this framework, the use of intelligent signal processing algorithms that allow the extraction of relevant information from sound records of ruminants is presented as a valid option to predict the forage intake of ruminants in grazing conditions. Bearing in mind also, that it must be a simple method from the technological point of view and that in addition it does not disturb the natural behavior of the animal.
In this thesis it is proposed to use two types of artificial neural networks (ELM, extreme learning machines y MLP, multilayer perceptron), both acting as multivariate non-linear regression models, to estimate dry matter intake in sheep. In all cases, the validation methodology of leaving one out was used. The results obtained with the neural networks show that the ELM show a significant improvement with respect to the linear model and the MLP for the same validation conditions.