This thesis is determined by trials for a target reaction temperature conversion of D- xylose and furfural yield at the lowest. Alumina in water at 140C, converts 80 percent of D-xylose and produced an 18 percent furfural but undergoes degradation, indicating the need to stabilize the furfural formed . The effect of the loss of furfural in toluene, toluene-water (1:1) and water in the presence and absence of a catalyst was studied, there is a greater loss of furfural in water without the presence of catalyst and even more when the catalyst is present. In toluene-water was little loss indicating a two phase system is needed. Three sets of methyl solvents isobutyl ketone (MIBK)-water 2-butanol-water and toluene-water study , the distribution constant was higher in MIBK-water (T.room) , but the reaction conditions (T: 140C) does not improve performance to furfural, as if it the toluene-water system . With zeolite catalysts (HMCM-22, Sn-BEA and HBEA ), complete conversion is obtained, except HMCM-22, attributed to problems diffusive substrate by two-dimensional channel system. The Sn-BEA zeolite was more active in the production isomerization reactions (xylulose). With non-zeolite catalysts (silica-alumina, alumina and Amberlyst -36) complete conversion, Amberlyst-36 was not active in the isomerization reaction are reached. The catalyst showed higher yield furfural was silica-alumina. The higher the temperature, the latter catalyst showed the highest furfural yield (76 percent), and no deactivation after use in reaction.
En esta tesis se determinó por ensayos que para un blanco a la temperatura de reacción la conversión de D-xilosa y rendimiento a furfural bajos. Con alúmina en agua a 140C, convierte el 80 por ciento de D-xilosa y produce un 18 por ciento de furfural pero sufre degradación, indicando la necesidad de estabilizar el furfural formado. Se estudió el efecto de la pérdida de furfural en tolueno, tolueno-agua (1:1) y agua en presencia y ausencia de catalizador, hay una mayor pérdida de furfural en agua sin presencia de catalizador y aún más en presencia de catalizador. En tolueno-agua, la pérdida fue poca, indicando que se necesita un sistema bifásico. Se estudió tres sistemas de solventes: metil isobutil cetona (MIBK)-agua, 2-butanol-agua y tolueno-agua, la constante de reparto fue más alta en MIBK-agua (T. ambiente), pero en condiciones de reacción (T: 140C) no mejora el rendimiento a furfural, como sí lo hace el sistema tolueno-agua. Con catalizadores de zeolíticos (HMCM-22, HBEA y Sn-BEA), se obtuvieron conversiones completas, con excepción de HMCM-22, que se atribuye a problemas difusivos del sustrato por el sistema de canales bidimensionales. La zeolita Sn-BEA fue más activa en la producción en reacciones de isomerización (xilulosa). Con catalizadores no zeolíticos (silice-alúmina, alúmina y Amberlyst-36) se alcanzan conversiones completas, Amberlyst-36 no fue activa en la reacción de isomerización. El catalizador que mayor rendimiento a furfural mostró fue sílice-alúmina. A mayor temperatura, este último catalizador mostró el mayor rendimiento a furfural (76 por ciento), además no presenta desactivación después de ser usado en reacción.