Biblioteca Virtual

Pesos locales. Propiedades y aplicaciones

Mostrar el registro sencillo del ítem

dc.contributor.advisor Salinas, Oscar Mario
dc.contributor.author Campos, Federico Augusto
dc.contributor.other Carena, Marilina
dc.contributor.other Ombrosi, Sheldy
dc.contributor.other Pérez Moreno, Carlos
dc.date.accessioned 2024-03-19T15:11:18Z
dc.date.available 2024-03-19T15:11:18Z
dc.date.issued 2023-12-11
dc.identifier.uri https://hdl.handle.net/11185/7532
dc.description Fil: Campos, Federico Augusto. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. es_ES
dc.description.abstract Esta tesis está dedicada al estudio de pesos de Muckenhoupt locales, caracterizaciones de los mismos, acotaciones de operadores locales en espacios tipo BMO asociados a estos pesos y su aplicación para obtener estimaciones a priori de operadores diferenciales elípticos. En el capítulo 2, dado un espacio métrico general, probamos caracterizaciones de una versión local de pesos que están en la unión de todas las clases de Muckenhoupt Ap, con p no menor a 1. Nos referimos con pesos locales a los pesos que verifican una condición tipo Ap de Muckenhoupt pero solo sobre bolas locales, esto es, bolas contenidas en un abierto del espacio y cuyo radio está acotado por una fracción de la distancia del centro de la bola al borde de tal abierto. Asimismo, estudiamos como caracterizar nuestros pesos mediante desigualdades que involucran versiones locales de operadores clásicos del Análisis Armónico tales como la función maximal local y las transformadas de Riesz locales. Además, logramos probar que pidiendo una condición adicional a las clases consideradas se caracteriza a los pesos w para los cuales se tiene la acotación de integrales singulares locales desde el espacio de funciones f tales que f/w es esencialmente acotada, a un espacio de tipo BMO relacionado al peso w y que toma las estimaciones correspondientes solo sobre las bolas locales. En el capítulo 3, consideramos, en el contexto euclídeo usual, operadores diferenciales elípticos de segundo orden definidos sobre un abierto acotado y estudiamos estimaciones a priori interiores en normas del espacio BMO local asociado a un peso que es A1 local. Con este fin en mente, obtenemos acotaciones, sobre los espacios mencionados, para ciertas integrales singulares locales y sus conmutadores, como así también para las correspondientes versiones con núcleo variable de estos operadores. es_ES
dc.description.abstract This thesis is dedicated to the study of local Muckenhoupt weights, their characterizations, boundedness of local operators in BMO-type spaces associated with these weights and their application to obtain a priori estimates of elliptic differential operators. In chapter 2, given a general metric space, we prove characterizations of a local version of weights that are in the union of all Muckenhoupt classes Ap, with p not less than 1. We refer by local weights to the weights that verify a Muckenhoupt's Ap-type condition but only on local balls, that is, balls contained in an open set and whose radius is bounded by a fraction of the distance from the center of the ball at the edge of such open. Likewise, we study how to characterize our weights through inequalities that involve local versions of classical Harmonic Analysis operators such as the local maximal function and local Riesz transforms. Furthermore, we were able to prove that by asking an additional condition to the classes considered, we characterize the weights w for which we have the boundedness of local singular integrals from the space of functions f such that f/w is essentially bounded to a space of type BMO related to the weight w and that takes the corresponding estimates only on the local balls. In chapter 3, we consider, in the usual Euclidean context, second-order elliptic differential operators defined on a bounded open and study a priori interior estimates in norms of the local BMO space associated with a weight that is local A1. With this end in mind, we obtain bounds, on the aforementioned spaces, for certain local singular integrals and their commutators, as well as for the corresponding variable-kernel versions of these operators. en_EN
dc.description.sponsorship Consejo Nacional de Investigaciones Científicas y Técnicas es_ES
dc.format application/pdf
dc.language.iso spa es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject Pesos locales es_ES
dc.subject BMO local es_ES
dc.subject Pesos de Muckenhoupt es_ES
dc.subject Integrales singulares es_ES
dc.subject Estimaciones a priori es_ES
dc.subject Conmutadores es_ES
dc.subject Local weights en_EN
dc.subject Local BMO en_EN
dc.subject Muckenhoupt weights en_EN
dc.subject A priori estimates en_EN
dc.subject Singular integrals en_EN
dc.subject Commutators en_EN
dc.title Pesos locales. Propiedades y aplicaciones es_ES
dc.title.alternative Local weights. Properties and applications en_EN
dc.type SNRD es_ES
dc.type info:eu-repo/semantics/doctoralThesis
dc.type info:ar-repo/semantics/tesis doctoral
dc.type info:eu-repo/semantics/acceptedVersion
dc.contributor.coadvisor Viviani, Beatriz Eleonora
unl.degree.type doctorado
unl.degree.name Doctorado en Matemática
unl.degree.grantor Facultad de Ingeniería Química
unl.formato application/pdf


Ficheros en el ítem

Este ítem aparece en

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess

Buscar en la biblioteca