Biblioteca Virtual

Vías catalíticas para maximizar la producción y mejorar la calidad del corte LCO (diesel) en el craqueo catalítico de hidrocarburos (FCC)

Mostrar el registro sencillo del ítem

dc.contributor.advisor Sedran, Ulises Anselmo
dc.contributor.author García, Juan Rafael
dc.contributor.other Grau, Javier Mario
dc.contributor.other Borio, Daniel Oscar
dc.contributor.other Mariani, Néstor Javier
dc.date.accessioned 2016-05-02
dc.date.available 2016-05-02
dc.date.issued 2016-03-16
dc.identifier.uri http://hdl.handle.net/11185/802
dc.description Fil: García, Juan Rafael. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina.
dc.description.abstract Se desarrollaron prototipos de catalizadores para maximizar el rendimiento y mejorar la calidad del corte de destilados medios (LCO) en el craqueo catalítico de hidrocarburos (FCC), y mejorar el procesamiento de otras alimentaciones complejas que contengan moléculas voluminosas. Se generó mesoporosidad sobre zeolita Y (principal componente en catalizadores de FCC) mediante tratamiento con NaOH para mejorar el acceso de las moléculas voluminosas de la alimentación a los sitios catalíticos. La evaluación catalítica consistió en el craqueo de 1,3,5-tri-isopropilbenceno (reactivo modelo) y gasoil de vacío (alimentación típica de FCC). En ambos casos, la mesoporosidad mejoró la actividad y selectividades observadas hacia los productos intermedios (di-isopropilbencenos y LCO, respectivamente). En el upgrading catalítico de bio-oil (alimentación renovable, oxigenada) la mesoporosidad mejoró la desoxigenación y se obtuvieron hidrocarburos de mejor calidad. También se atenuó la acidez Brönsted de otra serie de zeolitas Y, mediante intercambios iónicos con NaNO3, con lo que se logró moderar su actividad y mejorar la selectividad a LCO y su calidad. Además, la menor acidez desfavoreció las reacciones de transferencia de hidrógeno, que conducen a la formación de aromáticos que disminuyen la calidad del LCO; esto fue corroborado en experimentos de craqueo de n-hexadecano (reactivo modelo). Finalmente, se desarrolló un modelo riguroso aplicable al análisis de reacciones consecutivas (A→B→C), que describe los procesos simultáneos de difusión, adsorción y reacción química en partículas de catalizador poroso, en un reactor discontinuo de mezcla perfecta. Las simulaciones realizadas permiten definir estrategias para maximizar la selectividad observada hacia productos intermedios de interés. es_ES
dc.description.abstract In order to maximize the LCO, middle distillates cut in the catalytic cracking of hydrocarbons (FCC), yield and improve its quality as well as to improve the upgrading of other feedstocks containing bulky molecules, prototypes of FCC catalysts were developed. To improve the accessibility of bulky molecules to the active sites, mesoporosity was generated on Y zeolite (the main component of FCC catalysts) particles by means of desilication using NaOH. The catalytic performance of the various catalysts was evaluated through the cracking of 1,3,5-tri-isopropylbenzene (a model compound) and of vacuum gasoil (a typical FCC feedstock). In both cases, the mesoporosity improved the observed activities and selectivities to intermediate products (di-isopropylbenzene and LCO, respectively). In the catalytic upgrading of bio-oil (a renewable oxygenated feedstock) the mesoporosity improved the deoxygenation, the resulting hydrocarbons mixture having better quality. Moreover, in order to moderate the activity and increase the LCO’s selectivity and quality, the Brönsted acidity of another series of Y zeolites was reduced by means of ion exchange using NaNO3. Furthermore, the lesser acidity inhibited the hydrogen transfer reactions, which lead to the formation of aromatic hydrocarbons, thus decreasing the LCO’s quality. This was shown with n-hexadecane (a model compound) cracking experiments. Finally, a rigorous model, applicable to the consecutive (A→B→C) reaction analysis, which describes the simultaneous diffusion-adsorption-reaction processes in porous catalyst’s particles in a well-stirred batch reactor, was developed. The simulations performed allowed defining strategies to maximize the observed selectivity to intermediate products. en_EN
dc.description.sponsorship Consejo Nacional de Investigaciones Científicas y Técnicas es_ES
dc.description.sponsorship Agencia Nacional de Promoción Científica y Tecnológica
dc.description.sponsorship Universidad Nacional del Litoral
dc.format application/pdf
dc.language spa
dc.language.iso spa es_ES
dc.rights info:eu-repo/semantics/openAccess
dc.rights Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject Energy en_EN
dc.subject Catalityc cracking of hydrocarbons en_EN
dc.subject Diesel fuel en_EN
dc.subject Y zeolite en_EN
dc.subject Mesoporosity en_EN
dc.subject Acidity en_EN
dc.subject Energías es_ES
dc.subject Craqueo catalítico de hidrocarburos es_ES
dc.subject Combustibles diesel es_ES
dc.subject Zeolita Y es_ES
dc.subject Mesoporosidad es_ES
dc.subject Acidez es_ES
dc.title Vías catalíticas para maximizar la producción y mejorar la calidad del corte LCO (diesel) en el craqueo catalítico de hidrocarburos (FCC) es_ES
dc.title.alternative Catalytic ways for LCO (diesel) yield maximization and quality improvement in the catalytic cracking of hydrocarbons (FCC) en_EN
dc.type info:eu-repo/semantics/doctoralThesis
dc.type info:ar-repo/semantics/tesis doctoral
dc.type info:eu-repo/semantics/acceptedVersion
dc.type SNRD es_ES
dc.contributor.coadvisor Falco, Marisa Guadalupe
unl.degree.type doctorado
unl.degree.name Doctorado en Ingeniería Química
unl.degree.grantor Facultad de Ingeniería Química
unl.formato application/pdf
unl.versionformato 1a
unl.tipoformato PDF/A - 1a
dcterms.abstract In order to maximize the LCO, middle distillates cut in the catalytic cracking of hydrocarbons (FCC), yield and improve its quality as well as to improve the upgrading of other feedstocks containing bulky molecules, prototypes of FCC catalysts were developed. To improve the accessibility of bulky molecules to the active sites, mesoporosity was generated on Y zeolite (the main component of FCC catalysts) particles by means of desilication using NaOH. The catalytic performance of the various catalysts was evaluated through the cracking of 1,3,5-tri-isopropylbenzene (a model compound) and of vacuum gasoil (a typical FCC feedstock). In both cases, the mesoporosity improved the observed activities and selectivities to intermediate products (di-isopropylbenzene and LCO, respectively). In the catalytic upgrading of bio-oil (a renewable oxygenated feedstock) the mesoporosity improved the deoxygenation, the resulting hydrocarbons mixture having better quality. Moreover, in order to moderate the activity and increase the LCO’s selectivity and quality, the Brönsted acidity of another series of Y zeolites was reduced by means of ion exchange using NaNO3. Furthermore, the lesser acidity inhibited the hydrogen transfer reactions, which lead to the formation of aromatic hydrocarbons, thus decreasing the LCO’s quality. This was shown with n-hexadecane (a model compound) cracking experiments. Finally, a rigorous model, applicable to the consecutive (A→B→C) reaction analysis, which describes the simultaneous diffusion-adsorption-reaction processes in porous catalyst’s particles in a well-stirred batch reactor, was developed. The simulations performed allowed defining strategies to maximize the observed selectivity to intermediate products. en_EN


Ficheros en el ítem

Este ítem aparece en

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess

Buscar en la biblioteca